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Chapter 1
INTRODUCTION

Green (1964) distinguished between two methods of psychophysical
analysis: molar and molecular. Molar psychophysics is the technique which
has been most frequently applied to the study of auditory processing.
Within molar psychophysies the stimulus is typically defined by Iits
statistical properties (e.g., its average power). The performance of
human subjects is also specified by its statistical properties (e.g., the
average probability of a correct response). When models are fit to the
data the outputs of the models are described by their distributionsl
properties. The fit 1s therefore a fit of the average performance of a
model to the average performance of a subject. No attempt is made to use
the model to predict the trial-by-trial fluctuations in the responses of
the subjects.

In contrast, within molecular psychophysics the stimulus can be
specified exactly on any given ¢trial. Similarly, the responses of
subjects are considered on a trial-by-trial basis. When fitting models to
the data, the output of the models are specified exactly for each
stimulus, The fit is specified by comparing the output of the model to
the response of the subject for each individual stimulus.

The present thesis employs data collected within a molecular
experiment to evaluate a number of models of auditory detection. In this
chapter, four models will be described which have been of traditional
importance in psychoacoustics. Although each of these models has been
investigated in some detail on the molar level, only one of them has

received thorough consideration on the molecular level.
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The Theory of Signal Detectability as a starting point

The Theory of 3ignal Detectability (TSDP) is composed of two
thecries: a decision theory and a detectioﬁ theory. The development
within this thesis, as well as within most of the studies reviewed here,
assumes that the decision processes used by the subject in the detection
task are well summarized by the decision theory of TSD,

In outlining the Theory of Signal Detectability, Peterson, Birdsall
and Fox (1954) considered the decision problem faced by an observer who
must decide whether a waveform received during a particular observation
interval came from a population of nocise-alone waveforms or a population
of signal-plus-noise waveforms. They assumed that the decision of such an
observer is based on the value of some decision variable, X, which,
because of the random nature of noise, fluctuates across -observation
intervals that contain noise-alone waﬁeforms. Similarly, the value of X
varies across observation intervals that contain signal-plus-noise
waveforms. The resultant distributions of values of X are shown in Figure
1.1. The distribution labeled N shows the probability density associated
with each value.of X on trials during which a sample from the population
of noise-alone waveforms 1s presented. The distribution labeled SN shows
the probability density assoclated with each value of X on trials during
which a sample from the population of signal-plus-noise waveforms is
presented. The observer establishes a criterion Xc along the decision
axis. On any given trial, the observer reports the presence of a signal
(i.e., responds "Yes") if the observed value of the décision variable,
XJj, is greater than Xc. If X3 is less than Xc, the subject reports that
no signal was presented (i.e., responds "No"). The probability that the
cbserver will report the presence of a signal during an observation

interval in which a signal was presented, P(y/SN), is equal to the area
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Figure 1.1. Theoretical distributions of the subject's decision variable,

X, for noise-alone (N) and signal-plus-noise (SN) triels.
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under the SN curve to the right of Xc. The probability that the observer
will report the presence of a signal during an observation interval in
which no signal was presented, P(y/N), is equal to the area under the N
curve to the right of Xc¢. The normalized distance between the means of
the N and SN distributions, dz (Note 1), has been widely used as a
measure of sensitivity for both models and humans. It can readily be
computed from P(y/SN) and P(y/N). A measure of the subject's bias, Beta,
can also be calculated from the obtained hit and false-alarm rates. Beta
is equal to the ratio of the ordinate of the SN distribution to the
ordinate of the N distribution at Xc.

Although the deveiopment of TSD by Peterson, ét al. was oriented
towards radar applications, the structure of their theory proved to be
more generally applicable. In 1954, Tanner and Swets applied TSD to the
study of human psychophysics. Since that time, the structure of TSD has
become more and more widely aécepted as a good initial description of the
decision processes underlying human performance in many psychophysical
tasks,

Two assumptions.that underlie the application of TSD to the study of
human observers are of particular importance to the development here,
First, TSD assumes that the human observer is always operating in a noise
background. Even in an enviromment that is relatively free from
"external™ noise sources, the observer introduces "internal'" noise. As a
result, measurement terms such as absolute threshold or quiet threshold
are misnomers and have no particular importance to the models considered
here. TSD also assumes that the dimension depicted by X is continuocus.
There are no discontinuities or quantal jumps in perception, as would be
predicted by various threshold theories. The outputs of all of the models

we will consider are continuous functions of the parameters of the input

stimuli.



If one accepts the decision theory of TSD as a description of the
decision process of the human observer, then it remains for the
psychophysicist to determine the decision variable used by the subject.
That is, the psychophysicist must specify a set of transformations by
which external stimuli are changed into wvalues of X. Thus, the present
thesis will attempt to specify such a set of tnansformétions for the case
in which the task of the subject is to detect a tonal signal in a noise

background.

Molar psychophysics

Although the output of a model of detectability is typically assumed
to be monotonic with the decision variable, X, when comparing the output
of a model to the molar performance of a human observer, one cannot
directly measure the decision variable of the human observer, It is
therefore necessary to transform the output of the model into a measure
of performance. This is accomplished by producing distributions of the

“output of the model for the noise-alone and signal-plus—~noise cases. Once
the distributions for a particular stimulus situation have been obtained,
a "dz-like" measure can be computed. Further, by calculating dz as a
function of signal-to-noise ratio, a psychometric function for the model
is obtained. It is also possible to compute the Receiver Operating
Characteristic (ROC) for a model from these distributions. Although most
models do not specify the mechanism by which a particular criterion is
established, it 1is possible to move a hypothetical criterion along the
decision axis and compute the expected hit and false-alarm probabilities
at each point, By plotting the hit rate as a function of the false-zlarm

rate, the ROC for the model is obtained.



The decision theory of TSD, which was reviewed in the previous
section, has been widely applied in psychoacoustics. A detection theory,
ideal detector analysis, has alsc been of great importance. This type of
analysis allows one to describe the most effective detection strétegy for
an observer to adopt, given a specified amount of a priori information
about the stimulus. Two of the models that will be considered here have
their origin in ideesl detector analysis,

If the signal is completely specified to the observer before the
observation interval, that is, the parameters of signal are known exactly
(SKE), the optimal strategy 1is to cross-correlate the known
representation of the signal with the input waQeform (Peterson, et al.,
1954), Peterson, et al. were also able to show that the N and SN
distributions on the decision axis have equal variances and are normal in
form. Further, the expected d' for the Cross-Correlation observer is
equal to the square root of 2E/No, where E is the energy of the signal
and No is the spectrum level of the masking noise.

. Ideal detector anélysis was introduced to human psychophysics by
Tanner and Birdsall (1958). Although the performance of the human
observer is always much worse than that of the ideal observer, they argué
that ideal detectors are useful as normative models because systematic
differences between the performance of the human and the ideal suggest
what information is processed by the idezl that is either not received or
not pfocessed by the human observer.

Green (1960) found that the psychometric function for the
Cross-Correlator differed from that of the human in two important
respects. First, the psychometric function of the ideal observer showed
considerably higher sensitivity than that of the human. Second, the slope

of the psychometric function was much shallower for the ideal than for
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the human. Green went on to show that the psychometric function for the
ideal becomes steeper and moves toward the human psychometric function if
the task of the ideal is to detect a signal which may be any one of M
orthogonal signals. For the case thus far considered, M has been equal to
1. The slope of the ideal detector's psychometric function for M equal to
64 corresponded well to that of the human for an M equal to 1 task.
However, the absolute sensitivity of the ideal observer was still 10 dB
greater than that of the human observer. One possible interpretation of
this remaining discrepancy in sensitivity is that the human observer
operates in the presence of some form of "internal"™ noise. The efféctive
signal-to-noise ratio for the human is therefore less than the measured
sighal-to-noise ratio and less than the effective signal-to-noise ratio
for the ideal.observer.

The argument that the human observer'is operating like the ideal
observer, but with greater uncertainty, is compatible with another of
Green's observations. If a low level sinusoid of the same frequency and
starting phase as the signal (a pedestal) is added to the noise on both
signal-plus-noise and noise-alone trials, the performance of the human
will improve dramatically. The slope of the human psychometric function
for the pedestal condition is equal to that of the ideal. Further, the
absolute level of performance is only 6 dB below that of the ideal. A
common interpretation of this result is that because the pedestal has the
same frequency and starting phase as the signsel, it reduces the human
observer's.uncertainty about the parameters of the signal; that is, it
reduces the effective value of M. The absolute difference in performance
could again be explained by assuming that because of "internal" noise,
the human cobserver is operating at a lower effective signal-to-noise

ratio.



‘The ROC for the SKE observer will be a straight line of unit slope
when plotted in normal-normal coordinates. Egan, Schulman and Greenberg
(1959) found that human ROCs were well fit by straight 1lines in
normal-normal coordinates. However, the slope of the best-fitting line
was consistently less than one. This suggests that the variance of the
signal—blus-noise distribution is greater than that of the noise-alone
distribution, a result that is incompatible with a correlation observer.

Peterson, et al. wére also able to show that for the case where the
pafameters of the sighal are known except for starting phase (SKEP),
optimal performance could be obtained using a narrowband filter with a
bandwidth equal tc the reciprocal of the signal duration, followed by a
linear detector (envelope detector). Marill (1956) derived the
psychometric function for the Envelope Detector. He found that if it is
assumed that the absolute performance of the Envelope Detector is 11 to
15 dB worse than it actually is, a good fit between the psychémetric
function of the human and the psychometric function of the Envelope
Detector is achieved. This fit is better than'that achieved between the
human psychometric function and a normal ogive. Green and Swets (1974)
found, as Green (1960) had for the SKE observer, that the slope of the
psychometric function is less for the Envelope Detector than it is for
the human observer. Again, if the observer was assumed to be detecting
one of M orthogonal signals, the slope could be made as steep as that of
the human observer's psychometric function. As with the SKE observer, the
performance of the human observer was always lower than that for the
Envelope Detector.

Jeffress (1964) noted that the Envelope Detector generates
distributions for which the variance of the signal-plus-noise

distribution is greater than that of the noise-alone distribution.

.



Further, the noise-zlone distribution is a Rayleigh distribution. whereas
the signal-plus-noise distribution 1s a Rice distribution. Using these
two distributions, Jeffress was able to generate ROCs that had the
desired slope on normal-normal coordinates. Further, Jeffress obtained an
excellent fit to the 36-point rating scale data of Watson, Rilling, and
Bourbon (1964). |

The Energy Detector (i.e., a device for which the output voltage is
proportional to- the energy in the input waveform, after filtering) has
traditionally been of importance in radio electronics. It has also been
found to be the ideal detector for the case when the signal is an
increment in the intensity of the noise (Peterson et al., 1954). Pfafflin
and Mathews (1962) found that the psychometric functions for the Energy
Detector have slopes which were quite similar to those of the human
psychometric functions even when it was assumed that M was equal to 1.
However, if a '"eritical-band-like" bandwidth (200 Hz for a 1000-Hz
signal) was assumed for the initisl filtering stage, the absclute
performance of the Energy Detector was 5 to 10 dB better than that of the
human. If the initial filter was assumed to have a much wider bandwidth
(in some cases, several thousand Hz), the performance of the Energy
Detector could be degraded until it matched that of the human. After
considering the evidence from critical band experiments, which suggested
that the initial filtering in the human auditory system was probably
relatively narrow, Pfafflin and Mathews decided that a more reasonable
explanation of the discrepancy was to assume that the human detector was
operating in the presence of "internal" noise, which reduced the
effective signal-to-noise ratio.

Pfafflin and Mathews also used the concept of "internal"™ noise to

explain the results from pedestal experiments., As mentioned above, when a
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low level pedestal is added to the noise, the performance of a human
observer 1is improved. In addition, the slope of the human psychometric
function becomes shallower. and approximates that of the SKE observer. The
Energy Detector predi;ts these changes in the psychometric function
without resorting to the uncertainty hypothesis. The correlation between
the pedestal and the signal will determine the effect of the pedestal on
the performance of both the human and the Energy Detector. When the
sigral is in phase with the pedestal (i.e., positively correlated), the
increment in energy caused by adding the signal will be greater than the
energy ‘1n the signal. As the amplitude of the pedestai increases to
infinity, the performance of the Energy Detector approaches that of the
SKE observer. Although human performance does improve in the presence of
a low level pedestal, when the amplitude of the pedestal becomes very
large, performance, rather than approaching that of the SKE observer,
declines to a level below that obtained with no pedestal. Pfafflin and
Mathews point out that this result can be explained by assuming that the
human observer is operating in the presence of "internal" noise which is
proportional to the 1level of the external stimulus. Hence, as the
magnitude of the pedestal 1is increased, the effective signal-to-noise
ratio will decrease, causing the reduction in performance.

Green and Swets (197U4) observed that the ROC for the Energy Detector
is asymmetric, a result compatible with the human data. The ouputs of the
Energy Detector are distributed as chi-square on noise-alone trials and
as non-central chi-square on signal-plus-noise trials. The degree of
asymmetry is thus inversely related to the number of degrees of freedom,
which will be equal to twice the product of the effective bandwidth of
the stimulus (W) and the effective duration (T). Because the values of T
and W are free parameters in the model, the exact form of the ROC iz not

specified for the general model,



Jeffress (1967,1968) introduced an electrical analog model of
auditory processing. The model has a general structure (see Figure 1.2)
that is capable of mimicking several other models, The input waveform,
y(t), is passed through a filter, which typically has a relatively narrow
bandwidth, This stage of the model may correspond to the mechanical and
neural filtéring which occurs in the auditory periphery. The next stage
is a non-linear transform which results in a waveform containing only
positive values. This stage may represent rectification processes
inherent in the hair cells and neural fibers. The next stage is an
integrator, typically one with an appreciable decay ("leak"). This stage
may correspond to temporal summation at some point in the auditory
system, A sampling process is applied to the output of the integrator to
obtain the value of the decision variable, X',

By changing the parameters of the various stages of the model, its
performance can be altered. Jeffress (1967) found that when a narrow
(50-Hz) "eritical-band" filter was used for the first stage of the model,
followed by a halfwave rectifier and an integrator with a short decay
constant (1 ms) the output of the model followed the envelope of the
waveform at the output of the 50-Hz filter. By collecting several hundred
independent samples of the output of the model, Jeffress was able to
generate relative frequency distributions that agreed well with the
distributions Peterson, et al. derived mathematically for the Envelope
Detector.

Typically, the Energy Detector has been implemented as a bandpass
filter followed by a square-law device (l.e., a device for which the
output voltage is proportional to the square of the input voltage) and a
true integrator (i.e., an integrator without a "leak"). Within Jeffress'

model, the Energy Detector is achieved by employing a square-law device
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Figure 1.2. The general structure of the model of Jeffress (1967).
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as the nonlinear stage and using the integration stage and the sampling
strategy to approximate true integration. (Two methods achieving true
integration will be discussed in Chapter #4.)

Although Jeffress in his 1964 paper had found a remarkably close fit
between the ROC generated by the Envelope Detector and the 36-category
rating data from the human subject of Watson, et al. (1964), he later
found, as he stated in his 1967 paper, that "...the ROC curve is not a
sufficiently sensitive indicator to permit distinguishing definitely
between the subtly different distribution shapes with which we are
concerned" (Jeffress, 1967; p. U487). The subtly different distributions
to which Jeffress referred ranged from the normal-normal distributions of
the Cross-Correlator to the Rayleigh-Rice distributions of the Envelope
Detector. In an attempt to find more sensitive indicators of the
processes underlying human auditory detection, Jeffress investigated the
effects of manipulating other stimulus parameters on the performance of
his electrical model. Of particular concern for Jeffress was a fact that
he had demonstrated empirically for the Envelope Detector configuration
of his model, and that Peterson, et al. had shown mathematically for the
SKEP aobserver: The best performance of both mcdels occurred when the
duration of the signal was equal to the reciprocal of the bandwidth of
the model's filter. In sharp contrast, Green, Birdsall and Tanner (1957)
found that human performance did not vary significantly over a wide range
of signal durations (20 to 150 ms). Jeffress (1964), noting this fact,
suggested that the human observers might adjust their bandwidth to the
particular detection task, Jeffress (1967, 1968) was able to explain the
duration data without resorting to the questionable hypothesis of an
adjustable bandwidth. Although with a short decay constant the

detectability index of the model showed a sharp peak when the duration of
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the signsal waé equal to the reciprocal of the bandwidth of the filter, if
the decay constdant of the integrator was increased from 1 ms to 100 ms,
the peak was flattened out and the mcdel showed little variation over a
range comparable to'that shown by the human observer,

Jeffress also found that this specific configuration of the model,
in addition to fitting the psychometric function, the ROC curves, and the
changes in performance that are found when signal duration is varied,
showed differences in performance for continucus and gated maskers that
were qualitatively similar to those shown by the human observers of
Tucker, Williams, and Jeffress (1968)., That is, Jeffress' model predicts
the improved detectability of signals in gated noise, relative to signals
in continuocus noise. Further, the model predicts the increased advantage
for the gated noise condition when the signal duration is short.

In this section, several efforts to relate the molar performance of
human subjects in auditory detection tasks to the outputs of various
mathematically or electrically defined models have been discussed. In
each case the outputs of the model, which are typically "voltage-like" or
"power-like" quantities, are transformed into some performance variable
as would be measured for a human subject in a psychophysical task. This
transformation is accomplished in the following way. The expected
distributions of cutputs for the mcdel is obtained either mathematically
or empirically. Then, by assuming the structure of TSD, the expected hit
and false-alarm rates can be obtained, and from these, the normalized
distance between the means, dz. Using these data, ROCs and psychometric
functions for the model are derived.

This approach assumes that one can discriminate among a number of
possible popnlation distributions based on the experimental data.

However, there are several results indicating that this may be quite
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difficult: 1) The differences that exist among the population
distributions which we have considered are small. 2) There is
considerable variabiiity in the experimental data which will tend to
distort the distributions, That is, the analysis assumes that the
subject's response reflects the distribution of the stimulus-dependent
outputs of the model. If, however, the subject's response reflects not
only the distribution of $timulus dependent outputs, but also "internal”
noise, the shape of the combined distribution will in general be
different from that of the model output, unless, for example, both the
model output and the "internal" noise are normally distributed; 3)
Although ‘the psychometric funetion and the ROC are the tools most
frequently used to discriminate among the models, neither is particularly
sensitive to changes in distribution shape.

Even if these distfibutions could be distinguished using the tools
that are available on the molar level, comparing distributions is not
necessarily a good way to discriminate among models. Two different models
may produce identical distributions in many situations. For example, the
form of the distributions for several of the models we have discussed is
dependent only on the number of degrees of freedom in the output. In
general, the number of degrees of freedom is proportional to the product
of the effective bandwidth of the system and the effective integration
time. Hence, one cannot estimate the value of one of these parameters
without assuming the value of the other (Jeffress, 1968).

One final difficulty with the molar approach is that many of the
models yield only qualitative agreement with the human data, performing
much better than the human, at least in some situations. Typically, the
discrepancy between the model and the data is explained by assuming that

the human is uncertain about the parameters of the signal or is operating
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in the presence of "internal® noise. It is no doubt true that human
performance is degraded by these factors, and any complete model of

auditory processing will have to take uncertainty and "internal" noise
"into account. However, these constructs have, in the molar studies
reviewed here, been added after the fact and used as free parameters. No
attempt has been made to estimate their value outside of the

model-fitting process.

Mplecular psychophysics

The goal of "truly" molecular psychophysics, as stated by Green
(1964), is to predict the responses of the subjects on a trial-by-trial
basis. Sherwin, Kodman, Kovally, Prothe, and Melrcse (1956) compared the
trial-by-trial responses of subjects to the output of an electrical model
that was quite similar to the electrical model of Jeffress (1967). It was
composed of a 60-Hz single~tuned filter, followed by a square-law
detector and then by an exponential integrator. The task of the subjects
and the model was to detect a 1000-Hz signal presented at random
intervals within a continuous noise. The signal-level was adjusted such
that the human observers correctly reported the presence of the signal
approximately 60 percent of the time. The threshold of the model was then
adjusted to give a 60 percent hit rate at the same signal-level. The
decisions of the subjects and the model for the same stimuli were
recorded on a trial-by=-trial basis, The highest correlations between the
model and the subjects were achieved when the duration of the signal was
300 ms and the time constant of the integrator was 150 ms. However, for
this case, even though the hit rates of the subject and the model were
matched, the false-alarm rate of the model was twice that of ¢the human.
Further, the few false-alarms reported by the human subject were not well
correlated with those reported by the model.

1l



Although Watson (1962} did not try to predict the trial-by-trial
responses of his subjects, he did perform a fine-grain analysis of the
relationship between stimulus and response. He tape-recorded individual
noise-alone and signal-plus-nocise stimuli as they were presented to
subjects during a single-interval task. He then passed the stimuli
through a 100-Hz bandwidth filter and recorded the number of peaks in the
filtered waveform that exceeded each of 11 predetermined voltage
thresholds. The stimuli were then grouped for a given subject according
to the four-category rating response they had received when presented to
that subject. The average number of peaks which exceeded each of thé 11
thresholds was computed for each group. Watson found that these average
peak counts increased in an orderly fashion as a function of the
confidence the subject had that the signal was present.

Williams and Jeffress (1967) used a model similar to that of
Jeffress (1967) to predict the responses of three human observers on
individual two-alternative forced-choice (2AFC) trials. The model was
able to predict the responses of a subject better than the responses of
each subject were able to predict the responses of the other subjects.
The model was also a better predictor of the responses of the subjects
than was the presence or absence of the signal. On trials where the three
subjects made the same response, the model made the correct prediction 81
percent of the time.

Although Watson and Williams and Jeffress no doubt realized the
importance of nonstimulus variables in predicting the psychophysical
\response; they did not specifically include them in their models.
Sherwin, et al. assumed Gaussian variability on their model's threshold,
in an‘attempt to explain some of the differences between the prediction

of their fixed=-threshold model and the human responses, However, no
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attempt was made to predict where the threshold would be on any
particular trial.

Green (1964) argued that there are two components to any
psychophysical response., One component is determined by the stimulus, and
the other is independent of the stimulus, In order to be successful in
predicting‘the trial-by-trial responses of the subject, the molecular
psychophysicist must understand the influences of both of these factors.
The experiments Green presented were directed toward understanding the
stimulus-independent aspects of the subject's respohse. In order to
control the influences of the sti&ulus. several sequences of 2AFC trials
were tape-recorded. Each tape-recorded sequence of trials was then
presented to the same subjects sever2l times, Responses were recorded on
a trial-by-trial basis. This procedure allowed Green to measure the
consistency of responses across trials that contained identical stimuli.
Green hoped to find evidence for response biases that could be used to
augment the predictions of stimulus-oriented models. Although he found
evidence for such biases, the magnitude of these effects was small. He
concluded that the largest share of the stimulus-independent component of
the response continued to elude prediction. Green also estimated the
magnitude of the contribution of the stimulus-dependent component (the
Yexternal" noise) relative to the contribution of the
stimulus-independent component ("internal™ noise), and found them to be
about equal. Noting these facts, Green concluded that the future of a
"truly" molecular psychophysics was in doubt. Other evidence (Swets,
Shipley, McKee, and Green, 1959; Watson, 1962) also indicates that the
contribution of the "internal" noise is surprisingly large. Indeed, the
data from Gilkey, Hanna, and Robinson (1981) indicate that in many

situations the contribution of stimulus-independent factors may exceed
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the contribution of stimulus-dependent factors by as much as two to one.
~As a remedy, Green suggested the possibility of a quasi-molecular
approach, in which by presenting the same stimulus on several trials one
could measure the average response of the subject to that. stimulus, and
thereby minimize the effects of nonstimulus variables. It might then be
possible to use the parameters of the stimulus to predict this average |
response.

The current study will use an approach that would be considered by
Green as a quasi-molecular approach. The first study to use such an
approach was that of Pfafflin and Mathews (1966). They investigated the
detectability of a 312.5-Hz sinusoidal signal that was masked by each of
12 bursts of computer-generated noise. The stimuli were presented in
pairs to form 2AFC trials. Each stimulus pair was presented 72 or more
times and the average probability of choosing the first interval for each
pair was recorded. For each stimulus, they computed the energy passed by
a 100-Hz wide rectangular filter centered at the signal frequency and
found that the probability of choosing the first interval was related to
the difference in energy between the two intervals. However, this
quantity did not explain all of the variance in their data.

An examination of responses to pairs which did not contain a signal
in either interval and to pairs which contained the identical stimulus in
both intervals revealed "biases" which were independent of the energy
difference between the intervals. The relationship between the energy
difference and performance was weak on non-signal trials. For several
palrs, the interval with the least energy was more often chosen as
containing the signal. Although this result indicated that stimulus
factors other than the energy difference between the intervals were

controlling the responses of subjects, Pfafflin and Mathews were unable
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to determine what these other factors might be. For the pairs that
contained the same stimuli in both intervals, biases were found to be
sample-dependent. It appeared that subjects had biases toward different
intervals in the case where both intervals would have been identified as
noise-alone and 1in the case where both intervals would have been
identified as signal-plus-noise.

Ahumada (1967) also used the quasi-molecular épproach in an attempt
to estimété the critical bandwidth of his subjects. He tape-recorded a
series of 33 sighal-plus-noise and 27 noise-alone single-interval trials,
Bursts of thermal noise, 100 ms in duration and bandpass-filtered from
250 to 750 Hz, were used as maskers. The signal was a 100-ms pulse of a
500-Hz sinusold. The taped sequence of ¢trials was presented to the
subjects five times. The number of positive responses was summed for each
stimulus across the five presentations of the tape. The stimuli were
sampled from the tape-recording into a digital computer for subsequent
analysis. The energy in each stimulus was computed at the output of a
single~tuned digital filter centered at 500 Hz. This quantity was
computed for several filter bandwidths. Ahumada found that the
performance of his subjects on signal-plus-noise trials was best
correlated with the outputs of this simple Energy Detector when the
bandwidth of the filter was 10 to 20 Hz. However, on noise-alone trials,
considerably wider filters (100 to 200-Hz) were found to correlate best
with subject performance. He explained this discrepancy by assuming that
the subject monitors a 100 to 200-Hz wide bank of narrow (10 to 20-Hz)
filters and that the value of the maximum filter output within the bank
is used as a decision variable. On signal-plus-noise trials, the filter
centered at 500 Hz would be the one most frequently selected, leading to

relatively good correlations between the output of this filter and
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performance on signal-plus-noise trials. However, on noise-alone trials,
the selected filter would vary randomly from stimulus to stimulus,
leading to a relatively poor correlation between the output of the filter
centered at 500 Hz and performance, and also leading to an estimate of
the eritical bandwidth that corresponded more nearly to the width of the
filter bank than to the width of an individual filter., Ahumada did not
attempt to fit this model to his data, but merely offered it as a
possible explanation of the results he had found.

The possibility that the auditory system performs a more broad=band
analysis .of the input waveform when attempting to detect a signal in
noise was investigated by Ahumada and Lovell (1971). The results of two
experiments were reporﬁed. In the first experiment, 25 signal-plus-noise
and 25 noise-alone stimuli were investigated. The 100-ms noise waveforms
were generated by a computer program and consisted of 32 sinusoidal
componentéispaced at 10-Hz intervals over the range from 350 to 660 Hz.
The signal was a 100-ms sample of a 500-Hz sinusocid. The 50 stimuli were
converted to analog form and recorded on audio-tape in eight random
sequences for later presentation to ten subjects. Each of the sequences
was presented to the subjects four times, for a total of 32 responses per
stimulus per subject. The four-category rating responses of the subjects
were summed across the 32 presentations. The second experiment was
essentially identical to the first, except that 200 stimuli were
presented to seven subjects, 16 times each,

A Fourier spectrum was computed from the digital representation of
each stimulus, A multiple regression was then performed, using the power
in adjacent 50-Hz (30-Hz for Experiment 2) bands as predictor variables
and the summed rating responses as the variable to be predicted. The

functions that related the obtained welghting coefficients to component

-19-



frequency were found to be quite variable across subjects. Ahumada and
Lovell described some of these weighting functions as peaked, some as
flat, and others as showing a high-pass characteristic. Several of their
functions showed negative weightings at frequencies other than the signal
frequency, but others did not. Significantly, Ahumada and Lovell were
able to reduce the number of predictor variables in the second experiment
from nine to three with only a small decrease in predicted variance. They
accomplished this by defining three weighting contours which they claimed
corresponded to the auditory "features" of "piteh," "loudness," and "tone
presence." Many of the seemingly random differences in weighting
functions across subjects were explained by assuming that the subjects
applied different weights only to these three features.

As Ahumada (1967) had found, there were differences between
signal-plus-noise and noise-alone trials. The weighting functions
obtained for signal-plus-noise and noise-alone trials were not identical.
A filter-bank model 1like that proposed in Ahumada's earlier paper was
used in an attempt to predict this difference. However, the results
indicated that wide filters and wide banks predicted best on noise-alone
trials, whereas narrow filters and narrow banks predicted best on
signal-plus-noise trials.

The multiple regression approach was éxiended by Ahumada, Marken,
and Sandusky (1975). In their analysis, they allowed for the possibility
that the subject might differentially weight the stimulus in the time
domain as well as in the frequency domain. A computer was used to
generate 400 samples of noise. The noise samples were 500 ms in duration.
A 500-Hz signal, 100 ms in duration and temporally centered with respect
to the noise, was added to 200 of the noise bursts. The stimuli were then

converted to analog form, bandpass-filtered from 20 to 4000 Hz, and
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tape-recorded in eight random sequences for later presentation to
subjects. Each sequence was presented to the subjects once, and their
four-category rating responses were summed across the eight presentations
of each stimulus: Fourier analyses were computed for successive
nonoverlapping 100-ms intervals of each waveforms. The power in the
Fourier components computed from each of these intervals was then summed
across adjacent 50-Hz bands over the range from 425 to 625 Hz, yielding a
total of 25 spectral-temporal components. These 25 components were then
used as predictor variazbles in a multiple regression analysis similar to
that used by Ahumada and Lovell (1971). The resulting weighting contours
appeared to be more consistent than those of Ahumada and Lovell, All
subjects showed maximum weighting at the 500-Hz component during the
signal interval. In addition, most subjects showed negative weightings
before the signal interval at the 500-Hz component, and also showed
negative weightings at the 450-Hz component during the signal interval,
Ahumada, et al., (1975) explained these negative weightings by assuming
that the decision of the subject was based on a comparison of the
on-frequency energy during the signal interval to both the on-frequency
energy before the signal interval and the off-frequency energy during the
signal interval.

In addition to the multiple regression analysis, Ahumada, et al.
compared the output of a single-channel Energy Detector like that used by
Ahumada (1967) to the responses of subjects. The output of a 40-Hz-wide
single-tuned filter corresponded most closely to the performance of
subjects across all trials. When signal-plus-noise and noise~-alone trials
were considered separately, a 20-Hz bandwidth was most appropriate on
signal-plus~-noise trials, whereas a 40-Hz bandwidth was most appropriate

on nolse-alone trials. Although three values of integration time were
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considered, théy were found to have only a negligible influence on the
predictive value of the model. Although slight differences were found
between signal-plus-noise and noise-alone trials, these results are
encouraging in light of the results of Ahumada (1967), who found large
differences in bandwidth estimates between noise-alone and
signal-plus-noise trials, In addition, weighting contours derived
separately for noise-alone and signal-plus-noise trisls appeared to be
more similar than those reported by Ahumada and Lovell (1971). However,
while negative weightings were found for some components on
signal-plus-~noise trials, no significant negative weightings were found
for any component on noise-alone triais.

All of these quasi-molecular studies have assumed that an Energy
Detector, or a weighted combination of Energy Detectors, 1is an
appropriate model of the human auditory system. Although Ahumada has, in
some cases, been able to explain as much as 90% of the variability in the
data of some of his subjects with a weighted combination of Energy
Detector outputs, in other cases he has only been able t6 explain 8% of
the variance. An examination of the relationship between the percentage
of correct responses, P(C), and the proportion of variance accounted for
in the data presented by Ahumada and Lovell (1971) and by Ahumada et al.
(1975) reveals that these two statistics are strongly correlated.
Although this may only mean that subjects who perform well are more
consistent in their stategies and are, therfore, more predictable, it may
also indicate that a major factor determining the Energy Detector's
success as a model, is its ability to predict the presence of the signeal.
A comparison of these results to other models might give a better view of

how appropriate the Energy Detector is as a model of the auditory system,
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Frank (1979) compared the performance of several models to his
quasi-molecular data, including the Cross-Correlator, the Energy
Detector, and one configuration of the model of Jeffress (1967). He
investigated the detectability of a 500-Hz sinusoid that was maskéd'by
four samples of computer-geqerated Gaussian noise. The noise was
band-pass filtered from 100 to 3000 Hz. Each of the four noise samples
occurred on several randomly selected trials during each block of 100
trials., Half of the trials in each block contained random samples of
noise in an attempt to keep the subjects from "learning" any of the four
samples., Each noise sample occurred during both noise-alone and
signal-plus-noise trials. The signal-level was manipulated for each
sample individually such that the sample's psychometric function could be
obtained. The value of 10 log(E/No) required to yield 80% correct
detection was estimated for each sample from its psychometric functions,
Four values of signal starting phase (Alpha) over the range 0 to 90
degrees were investigated. Because the models do not make specific
predictions of P(C) for specific noise samples (an assumption about the
magnitude of the "internal" noise is required in order to arrive at a
detectability index for a specific sample), the fit of the models was
evaluated by comparing the relative changes in the outputs of the models
a3 a function of Alpha to the relative changes in average performance of
the subjects as a function of Alpha. Unfortunately, the results of
Frank's model-fitting efforts were inconclusive. There was considerable
variability in his data across subjects and across samples. None of the
models fit the data for all samples and for all subjects well. Because a
limited number of samples was investigated, it was difficult to determine

the source of the discrepancies between the models and the data.
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Bell and Schubert (1975), Bell and Becker (1975), and Dolan, Hirsh,
and Yost (1981) used a 2AFC paradigm, and also found dramatic changes in
detectability of a signal masked by individual samples of noise when the
starting phase of the signal was varied., Bell and Becker were fairly well
able to predict their narrow-band noise masking data using an envelope
detector. Becker and Bell (1975) had minimal success at relating the
wide-saﬁd masking data of Bell and Schubert to any of a variety of
stimulus measures.

The present study will also investigate models other than the Energy
Detector. This will be accomplished by estimating parameters of the
general form of the model described by Jeffress (1967). As previously
mentioned, given an appropriate choice of parameters, this modélvwill

simulate anEnvelope-Detector, an Energy-Detector, and a Leaky

Integrator. The data will be collected using a single-interval procedure
to avoid the problem of how the subjects combine the decision variables
computed during the two intervals of a 2AFC trial. Twenty-five noise
samples will be investigated., Each sample will be used on both
noise-alone trials and signal-plus-noise trials. In addition, four values
of Alpha will be investigated: 0, 90, 180, and 270 degrees. No attempt
will be made to obtain thresholds for individual samples. Instead, hit
and false-alarm rates for each sample obtained at two fixed signal-levels
will be related to the predictions of the models. The models predict that
the probability of a "Yes" response will increase monotonically with the
output of the model., However, as mentioned previously, they do not make
specific predictions regarding the detectability of signals masked by

individual samples of noise.
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Footnote

dz=(M -M_ )/ YV +V_ -
where Mn is the mean of the noise-alone distribution, Msn is the
mean of the signal-plus-noise distribution, Vn is the variaﬁce of
the noise-alone distribution and vsn is the variance of the
signal-plus-noise distribution. If the noise-alone and
signal-plus-noise distributions are assumed tc have equal variance

and be normal in form, d'=dz. The term d' will here be reserved for

this case.

=25-



Chapter 2

METHODS

Subjects

The subjects were four undergraduate work-study students (2 males, 2
females) who were paid for their participation in the experiment. Their
ages ranged from 19 years to 25 years. All four subjects were experienced
auditory observers with audiometrically normal hearing. Each subject had
participated in similar auditory experiments for a period of at least
three months before beginning the experiments reported here. In addition,
each subject received several thousand practice trials under the present
experimental procedure before any of the data reported here were

collected.

Apparatus
Signal and noise stimulli were generated on & Digital Equipment

Corporation PDP-11/34A computer. They were output through separate
Analogic Corporation 1U4-bit digital-to-analog converters (DACs) at a
sampling rate of 20,000 samples per second. The waveform in each channel
was then smoothed by a 6.3-kHz low-pass filter with an 80-dB per octave
roll=off to prevent aliasing. The noise channel -was additionally
band-pass flltered from 100 to 3000 Hz. The signal was passed through a
programmable attenuator to control the presentation level. The signal and
the noise were then mixed analogically, passed through a final
attenuator, and presented to the subjects through TDH-49 headphones. The
four subjects were seated in a Suttle Equipment Corporation double-walled

soundproof room during the experiment.
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Procedure

The signal was a 100-ms sample of a 500-Hz sinusoid. The sinusoid
was generated using the sine function provided with the RT-11 FORTRAN ~
library. The onsets and offsets were shaped by 8-ms linear ramps. The
signal-level was controlled by a programmable attenuator. Signals with
four different starting phase angles (Alphas) were investigated over the
course of the experiment: 0, 90, 180, and 270 degrees.

The noise waveforms were generated by a 33-bit software
shift-register (Gilkey and Frank, 1981). Within the 100 to 3000-Hz
passband, the long term power speotruﬁ of the noise is white, and to a
very good approximation the distribution of instantaneous pressures is
Gaussian., Each time the shift-register is initialized to the ‘same
starting value, the identical noise sample is produced., In the
experiments reported here, 25 nonoverlapping 148-ms samples of noise were
selected for investigation. Each day the same noise sample (not one of
the 25 studied) was used to calibrate the noise channel of the circuit.
This sample was output repeatedly (with no temporal gap between the
offset and the onset) and its level was adjusted to be equivalent to that
of a thermal noise with a spectrum level of 50 dB SPL, The average
spectrum level of the 2% samples was then assumed to be approximately
50 dB SPL,

Two signal-levels were used under each conditicon of the experiment.
Within each set of four blocks, the signal-level on the first and third
blocks resulted in a 10 Log(Es/No) of 11.5 dB. The signal-level on the
‘second and fourth blocks resulted in a 10 Log(Es/No) of 8.5 dB. Each set
of four blocks was preceded by a practice block during which the

signal-level resulted in a 10 Log(Es/No) of 14.5 dB.
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All of the data reported here were collected using a single-interval
(Yes-No) procedure. Each trial began with a 198-ms warning 1light,
followed by a 100-ms pause, a 198-ms observation -interval marked by a
light, a 1500-ms response interval, and a 198-ms feedback interval.
During the observation interval, the noise burst began 25 ms after the
onset of the light and was centered temporally with respect to the light.
The signal, if present, began 20 ms after the onset of the noise and was
centered temporally with respect to both the light and the noise. The
subjects' task was to press one of two buttons on the response panel in
front of them during each response interval, to indicate whether or not
they believed a signal had been presented on that trial. Feedback was
used only during training and practice blocks. During the feedback
interval, a light indicated whether or not the signal had been presented.
Because the 25 noise samples under investigation were never presented
during training or practice blocks, subjects never received feedback
about thelr trial-by-trial performance for these twenty-five samples.
However, at the end of each set of four blocks subjects were given
feedback on their average performance on each block.

During each two-hour experimental session four sets of four blocks
of trials were presented, Each set of four blocks was preceded by a
practice block. Practice blocrksAcontained twenty trisls; all other blocks
contained 100 trials. o

Within each block of 100 trials, each of the 25 noise samples was
presented four times. On two of those four trials a signal was added to
the noise. On the other two trials only the noise was presented, Over the
course of the experiment each noise sample was presented between 156 and
396 times for each combination of signal-level and Alpha. Again, on half

of these trials (about 100 trials for each combination of signal-level
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and phase), a signal was added to the noise sample. On the other half of
the trials, the noise sample was presented alone, The actual number of
presentations of each sample to each subject under each condition is

shown in Table A1.1 of Apendix A1.

Stimulus Analyses

All noise—alone and signal-plus-noise waveforms were output through
the DAC, mixed analogically, ahd'presented through headphones as they
would be on a normal trial. The mixed waveform was simultaneously sampled
into the PDP 11/34 through an analog-to-digital converter at a point in
the circuit immediately before the final attenuator. The sampling rate
was 20,000 samples per second. The digitized waveforms were then
transferred to the DEC-10 computer system on the campus of Indiana
University-Purdue University at Indianapolis. Fast Fourier transforms
(FFTs) were computed on the waveforms and stored for subsequent analysis
(the mixed-radix fast Fourier transform algorithm of Singleton (1969) was
used to compute all FFTs and inverse FFTs).

A model 1like that of Jeffress (1967) was implemented on the
computer. To mimic the first stage of his model, a subroutine was written
to compute the amplitude and phase characteristics of a single-tuned
(RLC) filter. The amplitude and phase characteristics defined by the
subroutine were then applied to the stored amplitude and phase spectra of
each stimulus. The filtered spectra were transformed into the time domain
by an inverse FFT. Seven filter bandwidths (10, 25, 50, 75, 100, 302, and
538 Hz) were used with the filter centered at 500 Hz. In addition, seven
filters, each with a bandwidth of 50 Hz, but different center frequencies
(350, 400, 450, 500, 550, 600, and 650 Hz) were employed in 1later

analyses.
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The nonlinearity in Jeffresq' model was approximated in two ways.
Half-wave rectification was achieved by replacing the negative values in
each filtered waveform with zeros. The square-law device was simulated by
squaring each element in each filtered waveform,

Each element in the output of the integration stage was defined as
the sum of the corresponding input element and all previous input
elements weighted by an exponential decay. The value of the exponential
decay function was replaced with a value of zero if the computed
weighting was less than .01, Six values were used for the decay constant
of the exponentisl (.01, 1, 10, 50; 100, and 200 ms). The .01-msms decay
constant was sufficiently short that the digitized waveforms were passed
' through the integration stage unaltered.

The output of the integration stage is a waveform, containing 3000
digital values, Exactly what sampling strategy should be applied tc these
3000 values in order to obtain a -single value as a decision variable (X')
is not obvious a priori. The five sampling strategies considered here
were thus chosen rather arbitrarily. The resultant value of X' was equal
to:

1. the average output of the integration stage during the stimulus
interval (Strategy 1)

2. the average output of the integration stage during the signal
interval (Strategy 2)

3. the average output of the integration stage during an 8-ms
" " interval that began simultaneously with the signal offset
(Strategy 3)

4, the average output of the integration stage during an 8-ms
interval that began 16 ms after the signal offset (Strategy 4)

5. the meximum value of the integrator output during the stimulus
interval (Strategy 5)
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"Stimulus interval® refers to an interval that starts at the onset of the
noise and ends approximately 2 ms after its offset, and "Signal interval”
refers to an interval that begins 20 ms after the onset of the noise and
ends 28 ms before its offset ("Signal interval" refers to the same

interval on both signal-plus-noise and noise-alone trials.)
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Chapter 3

RESULTS

As was mentioned in the introduction, Green (1964) distinguished
between two methods of psychophysical analysis. The method which has
traditionally been applied in pasychoacoustics he referred to as molar
psychophysies, The techniques applied in the experiments described here
are closer to the approach Green referred to as molecular psychophysics
(Note 2). In this chapter the data from the present experiments will be
described on both of these levels., As will be seen, the results of these
two forms of analysis are quite distinct. Some of the implications of

these differences will be considered.

Molar Level
The psychometric function has frequently been used to describe the
results from simple detection experiments such as the one reported here,
Figures 3.1 through 3.4 show two-point psychometrie functions for each of
the four subjects. The four points shown at each signal-level are the
maximum probability of a correct response, P(C)max, for each Alpha.
P(C)max was obtained from d' by assuming an optimal criterion and
calculating the expected value of {P(Y/SN)+[1-P(¥Y/N}]1}/2. The curves were
generated by finding the least-squares fit to the logarithmic transform
of the function d'=m(E/No)¥K using the logistic approximation to the
cumulative normal, The slopes (k's) and intercepts (m's) are well within
the bounds typically found for a tone-in-noise detection task (Egan,
Lindner and McFadden, 1969). The average performance of the subjects is
well fit by a psychometric function with ; slope of 5% per dB over the

approximately linear portion (k=1.00), and an intercept such that a 10
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Figure 3.1. Psychometric function for subject S8G. Points plotted show
P(C)max obtained under each condition. Square symbols are with Alpha
equal to 0. Circular symbols are with Alpha equal to 90. Diamond symbols
are with Alpha equal to 180. Triangular symbols are with Alpha equal to
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Figure 3.2. Psychometric function for subject CV. Points plotted show
P(C)max obtained under each condition, Square symbols are with Alpha
equal to O, Circular symbols are with Alpha equal to 90. Diamond symbols

are with Alpha equal to 180. Triangular symbols are with Alpha equal to

270,
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Figure 3.3. Psychometric function for subject TW. Points plotted show
P(C)max obtained under each condition. Square symbols are with Alpha
equal to 0, Circular symbols are with Alpha equal to 90, Diamond symbols
are with Alpha equal to 180, Triangular symbols are with Alpha equal to
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Figure 3.U4. Psychometric function for subject JM. Points plotted show
P{C)max obtained under each condition. Square symbols are with Alpha
equal to 0. Circular symbels are with Alpha equal to 90. Diamond symbols

are with Alpha equal to 180. Triangular symbols are with Alpha equal to
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Log(E/No) of 10 leads to a' d' of one (m=-10.51). Tables 3.1 and 3.2 show
the values of P(C)max and Beta obtained for each subject under each
experimental condition. Unfortunately, data for the four values of Alpha
were not collected simultaneously, but during successive 8 to 16 day
periods. Presumably, the small differences that occur across different
Alphas were more strongly influenced by the fact that the conditions were
run during different periods of time than by any small changes in the
average stimulus that might have occurred as a result of the change in

Alpha.

Molecular Level

When examining the data on the molecular level, the number of data
points to be considered increases dramatically. In an attempt to return
the amount of data to manageable size, the remainder of the figures
presented in this chapter will only show data that have been averaged -
across subjects. This procedure is, however, in conflict with a truly
molecular philosophy, and does obscure some real and, no doubt, important
individual differences which exist between subjects. Figures for
individual subjects have, therefore, been included in Appendix AZ2. To
reduce further the amount of data to be presented, the remainder of the
figures in this chapter will only show data collected when 10 Log(E/No)
was equal to 8,5 dB,

One way to obtain an initial perspective on the data is to plot the
results for individual samples in Receiver Operating Characteristic (ROC)
space, Figures 3.5 through 3.8 show data that have been averaged across
subjects plotted in ROC space for each of four values of Alpha. Each
number is plotted at the hit and false-alarm rates obtained for the

sample associated with that number. It is important to realize that these
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P(C)max at each Alpha

Alpha=0
Alpha=90
Alpha=180

Alpha=2T0

Alpha=0
Alpha=90
Alpha=180

Alpha=270

TABLE 3.1

10 Log(E/No)=11

SG
.813
.864
.819
.891

cv

.812

.817

.806
LT73

by Subject

.5 dB

TW
.836
. 869
. 835
. 855

10 Log(E/No)=8.5 dB

SG
.691
.718
.679
.738

cv
.670
.686
.676

.622

W
.700
. 734
.728
.675

JM
729
.784
.726
.787

JM
.606
.660
.607
.626



TABLE 3.2

Beta at each Alpha by Subject

Alpha=0
Alpha=90
Alpha=180

Alpha=270

Alpha=0
Alpha=90
Alpha=180

Alpha=270

10 Log(E/No)=11,5 dB

SG

1.17

10 Log(E/No)=8.5 dB

SG
1.00
1.13

.96

1.42

cv

.88
.76
.70

.87

cv
1.04
1.02

.94

1.01

TW JM
.80 .91
.93 .69
1.07 .72
.57 1.03
TW JM
.95 .95
1.12 .94
1.12 .87
.91 1.00



Figure 3.5. Hit and false-alarm rates obtained for individual samples are
shown in ROC space. Each number plotted shows the data for the sample
associated with that number. The square symbol shows the average hit rate
and false-alarm rate across all samples. The data shown have been

averaged across subjects and were collected with Alpha equal to O,
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Figure 3.6, Hit and false-alarm rates obtained for individual samples are
shown iIn ROC space. Each number plotted shows the data for the sample
associated with that number. The square symbol shows the average hit rate
and false-—alarm rate across all samples. The data shown have been

averaged across subjects and were collected with Alpha equal to 90.
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Figure 3.7. Hit and false-alarm rates obtained for individual samples are
shown in ROC space. Each number plotted shows the data for the sample
associated with that number. The square symbel shows the average hit rate
and false-azlarm rate across all samples. The data shown have been

averaged across subjects and were collected with Alpha equal to 180,
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Figure 3.8. Hit and false-alarm rates obtained for individual samples are
shown in ROC space. Each number plotted shows the data for the sample
associated with that number. The square symbol shows the average hit rate
and false-alarm rate across all samples., The data shown have been

averaged across subjects and were collected with Alpha equal to 270.
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points do not represent an ROC curve. Presumably the su?ject has
established only one criterion, The individual points in ROC space do
not, therefore, represent changes in .the subject's criterion across
samples, but rather the position of each noise-alone and
signal-plus-noise sample relative to the subject's single criterion. On
the molar level, all of these data would be summarized by a single point.
This poinf is shown as the open square in each figure. As can be seen,
the average may not provide an adequate summary of the data. The data for
individual samples are distributed rather broadly throughout ROC space.
An examination of the data in these figures will show that false-alarm
rates for individual samples range from .08 to .80. Hit rates span an
even broader range, from .18 to .98. When one considers the data for
individual subjects, even greater ranges can be found for some subjects,
False-alarm rates for subject TW range from .00 to .96. His hit rates
range from .03 to 1.00, These ranges give a rough estimate of the degree
to which the subject is stimulus-bound. If a subject's responses were
totally determined by the stimulus (i.e., if the subject had no
"internal®™ noise), when the identical stimulus was presented, the subject
would make the same response. The data, when plotted in ROC space, would
appear only in the four corners of each figure, On the other hand, if the
subject's responses were totally independent of the external stimulus
(i.e., if the responses of the subject were determined by the "internal"
noise), the data would all lie within binomial variance of the average
point. TW is by this, and by other measures (Gilkey, et al., 1981), a
subject with a high degree of internal consistency, as if he were
operating in the presence of relatively little "internal' noise. It is of
interest that although subject SG is, by this and other measures,

operating in the presence of considerably more "internal™ noise, his
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molar performance is almost identical to that of TW. This result is
difficult to reconcile with the assumption of many of the models
discussed in the introduction that the effect of "internal" noise is
simply to reduce the effective signal-to~noise ratio,

It should be noted from these figures that the points for particular
samples under certain conditions consistently fall below the chance line.
For example, the average subject had a false-alarm rate of .31 for
Sample 10 when Alpha was set to zero, yet attained a hit rate of only
.24, An examination of the data for individual subjects reveals that
Sample 10 fell below the chance line for all subjects. This implies that
Sample 10 sounds more like signal-plus-noise when it is presented alone
than when a signal at this Alpha is added to it.

The position of the samples within ROC space changes when Alpha is
varied. Although the false-alarm rates tend to stay relatively constant,
the hit rates, in many cases, change appreciably. For example Sample 10
is found below the chance line in Figure 3.5, where Alpha is equal to
zero; but in Figure 3.7, where Alpha is equal to 180, it has moved to the
top of ROC space, with a hit rate of .98 and a false-alarm rate of .37.
These effects of Alpha can be seen more clearly by examining Figure 3.9,
Each panel of this figure describes data for an individual noise sample.
The top half of each panel shows the hit rate (filled circles) and the
false-alarm rate (open circles) obtained by the average subject for that
particular sample as a function of Alpha. The lower panel shows the power
at the 500-Hz component of the Fourier spectrum on signal-plus-noise
(filled symbols) and noise-alone (open symbols) trials for that same
sample. There are, in many cases, dramatic changes in hit rate which are
associated with changes in Alpha. As shown above for Sample 10, the hit

rate of the average subJect for an individual sample may change by as
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Figure 3.9. Performance and stimulus measures as a function of Alpha.
Each panel shows the results for a particular sample. The upper half of
each panel shows the obtained proportion of "Yes" responses. The lower
half of each panel shows the power at the 500-Hz component of the Fourier
spectrum of the stimulus. Filled symbols are for signal-plus-noise
triasls. Open symbols are for noisefalone trials. Performance data have
been averaged across subjects, and were collected at 10 Log(E/No) equal

to 8.5 dB. (The figure extends through five pages.)
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much as .70 with a 180 degree change in Alpha. The data for individual
subjects indicate that the hit rate may change from near zero to near one
with as little as a 90 degree change in Alpha., These changes are, to a
first approximation, associated with changes in the power at the 500-Hz
component of the Fourier spectrum, A fairly good correspondence, for
example, 1s seen between the hit rate of the average subject and the
power of the 500-Hz component of Sample 10. In some cases, however, there
is a relatively poor correspondence between the 500-Hz component and the
obtained hit rate. This correspondence is weak, at best, for a sample
like Sample 13. The relationship between performance and the power at the
500-Hz component appears to be weaker when both signal-plus-noise and
noise-alone trials are considered. The below-chance performance, which is
found for Sample 10 when Alpha is equal. to =zero, corresponds to a
negative difference between the power of the 500-Hz component on
signal-plus-noise trizls, and the power of the 500-Hz component on
noise-alone trials. However, such a negative difference in power exists
for Sample 1 when Alpha is equal to 270, but does not lead to below
chance performance. Further, the average performance for Sample 8 when
Alpha is equal to 270 is below chance, but the difference between the
power in the 500-Hz component on signal-plus-noise trials and noise-alone
trials is positive and greater than 10 dB.

Comparing false-alarm rates across samples also reveals some
striking discrepancies. For example, there is less power at the 500-Hz
component for Sample 15 than there is for any other noise-alone sample.
In fact, there is more than 11 dB less power. Yet Sample 15 received the
highest number of false-alarms of any sample.

In summary, the data, when analyzed on the molar level, indicate

that the performance of all subjects is well within the bounds normally
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expected for a tone-in-noise detection task. There were, at most, small
effects of manipulating Alpha when examined on this level. In sharp
contrast, when the data were considered on the molecular level, large
changes in performance were found with relatively small changes in Alpha.
A wide range of variations in performance was f‘ound_across samples, For
individual samples, a correspondence was found between the observed
changes in hit rate as a funetion of Alpha and the concurrent changes in
the power at the 500-Hz component of the Fourier spectrum. This
relationship seemed to be considerably weaker when noise-alone trials

were also considered, or when performance was compared across samples.
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Footnote
2. The experiment reported here would be classified by Green (1964) as
quasi-molecular. However, no distinction between molecular and

quasi-molecular will be made in the remainder of this thesis.
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Chapter 4

DISCUSSION: MODELS

As described in Chapter 2, a model with a structure similar to the
model of Jeffress (1967) was implemented on the computer. During the
initial analysis, a half-wave rectifier was used as the non-linear stage
of the model. With a 10 Log(E/No) of 8.5 dB, the output of the model was
computed in response to each of the 125 stimuli (25 noise-alone stimuli
and 100 signal-plus-noise stimuli) for all combinations of the seven
bandwidths (10, 25, 50, 75, 100, 300 and 500 Hz) and six time constants
(.01, 1, 10, 50, 100 and 200 ms)., Each of the five sampling strategies
described in Chaptér 2 was applied to the output of the integration stage
to obtain a value of the model's "decision variable" (X'). In order to
compare the value of the decision variable of the model to the responses
of the subjects, the logarithm of X' for each sample was transformed into
a predicted proportion of "Yes" responses, P'(Y), using the logistic
approximation to the cumulative normal, P(Y)=1/{1+exp[-(X'-a)/bl}. The
parameters of ﬁhe logistic were chosen to minimize the squared deviation
between the obtained proportions of "Yes" responses, P(Y)s, and the
P'(Y)s (Note 3). This least-squares fit was obtained using a function
minimization routine called STEPIT (Chandler, 1970).

The results of this analysis are summarized in Figures 4.% through
4,4, The points plotted were selected to summarize the effects of the
model's major parameters (filter bandwidth and integrator decay constant)
in the regions of the parameter space where the model is able to predict
the data relatively well. The upper panel in each figure shows the effect
of bandwidth on the value of R2. where R2 is defined as the sum of the

squared deviations between the P'(Y)s and the mean of the P(Y)s divided
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3

Figure 4;1. R2 as a function of the bandwidth of the filter and the decay
constant of the integrator. Square symbols are for a 10 Log(E/No) of
8.5 dB. Circular symbols are for a 10 Log(E/No) of 11.5 dB. Filled
symbols are for Strategy 2. Open symbols are for Strategy 5. In the upper
panel, the decay constant of the integrator has been fixed at .01 ms for
the filled symbols, and 200 ms for the open symbols., In the bottom panel,
the bandwidth of the filter has been fixed at 50 Hz for both filled and

open symbols. The results shown are for subject SG.
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Figure 4.2, R2 as a function of the bandwidth of the filter and the decay
constant of the integrator. Square symbols are for a 10 Log(E/No) of
8.5 dB., Circular symbols are for a 10 Log(E/No) of 11.5 dB. Filled
symbols are for Strategy 2. Open symbols are for Strategy 5. In the upper
panel, the decay constant of the integrator has been fixed at .01 ms for
the filled symbols, and 200 ms for the open symbols. In the bottom panel,
the bandwidth of the filter has been fixed at 50 Hz for both filled and

open symbols, The results shown are for subject CV.
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Figure 4.3. R2 as a function of the bandwidth of the filter and the decay
constant of the integrator. Square symbels are for a 10 Log(E/No) of
8.5 dB. Circular symbols are for a 10 Log(E/No) of 11,5 dB, Filled
symbols are for Strategy 2. Open symbols are for Strategy 5. In the upper
panel, the decay constant of the integrator has been fixed at .01 ms for
the filled symbols, and 200 ms for the open symbols. In the bottom panel,
the bandwidth of the filter has been fixed at 50 Hz for both filled and

open symbels, The results shown are for subject TW.
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Figure 4.4, R? as a function of the bandwidth of the filter and the decay
constant of the integrator. Square symbols are for a 10 Log(E/No) of
8.5 dB. Circular symbols are for a 10 Log(E/No) of 11.5 dB. Filled
symbols are for Strategy 2. Open symbols are for Strategy 5. In the upper
panel, the decay constant of the integrator has been fixed at .01 ms for
the filled symbols, and 200 ms for the open symbols. In the bottom panel,
the bandwidth of the filter has been fixed at 50 Hz for both filled and

open symbols. The results shown are for subject JM,
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by the sum of the squared deviqtions between the P(Y)s and their mean,
The square gymbols show these initial results obtained at a 10 Log(E/No)
of 8.5 dB, The curves for two different sampling strategies are shown.
The filled symbols show the results when the decision variable of the
model, X', is the average value of the output of the integration stage
during the signal interval (Strategy 2). The open symbols show the
results when X' is equal to the maximum value of the output of the
integration stage during the stimulus interval (Strategy 5). Strategy 2
is most effective when the decay constant of the integrator is relatively
short. The results when the decay constant of the integration stage is
.01 ms are shown. Strategy 5 is most effective when the decay constant of
the integration stage is relatively long. The results when the decay
constant is 200 ms are shown. The peak for both curves is obtained when
the bandwidth of the filter is 50 Hz., However, filter bandwidths between
25 Hz and 100 Hz predict the data relatively well, The differences
between the two curves are small, particularly near the 50-Hz peak. The
similarity of these two curves is to be expected from a consideration of
the value of X' in these two cases. For the first case, the .01-ms decay
constant is short relative to the 20 KHz sampling rate at which the
stimuli were digitized. As a result, the integration stage 1is
functionally removed from the model. That is, the output of the
integration stage is identical to the input. However, the sampling
strategy averages over the signal interval, and is therefore proportional
to true integration (i.e., integration without a "leak"). X' for this
case 1is proportional to the integral of the half-wave rectified filter
output over the signal interval., In the second case, the 200-ms decay
constant of the integration stage is long relative to the duration of the

stimulus. Thus, at the end of the stimulus interval the inputs from the
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beginning of the stimulus have not decayed completely and retain
approximately half of their original value. That is, because the decay
constant is long and the stimulus duration relatively short, the output
of the integration stage will, to a rough approximation, be equal to the
true integral of the input. Further, when the decay constant of the
integrator is relétively long, the output of the integration stage tends
to grow throughout the stimulus interval, reaching a maximum near the end
of the interval. As a result, X' will be approximately equal to the true
integral of the half-wave rectified output of the filter over the
stimulus interval. Thus, the values of X' used to compute the two curves
are very similar. The circular symbols show the results for 10 Log(E/No)
equal to 11,5 dB. As at the lower signal-level, the nonlinear stage of
the model is always a half-wave rectifier. At this signal-level the
output of the model has been computed only for combinations of filter
bandwidth and integrator decay constant which led to relatively high
values of r2 with 10 Log(E/No) equal to 8.5 dB. As can be seen, the shape
of the curves is similar to that found at the lower signal-level. The
curves are somewhat flatter than those obtained at the lower
" signal-level, but still peak near 50 Hz. (One of the curves for subject
JM reaches a slightly higher value at 75 Hz than at 50 Hz.) The open and
closed symbols show the results for the two combinations of integrator
decay constant and sampling strategy shown at the lower signal-level.
Again, only small differences are found between the two curves.

The lower panel of Figures 4.1 through 4.4 shows the effect of the
decay constant of the integrator. The bandwidth of the initial filter has
been fixed at 50 Hz. As in the upper panel, the square symbols show the
results for 10 Log(E/No) equal to 8.5 dB and the circular symbols show

the results for the 10 Log(E/No) equal to 11.5 dB. Except for an overall
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increase in Ra. the results are quite similar at the two signal-levels.
The filled symbols show the results when the value of the decision
variable, X', is equal to the average output over the signal interval
(Strategy 2), while the unfilled symbols show the results when X' is the
maximum output during the stimulus interval (Strategy 5). As can be seen,
Strategy 2, the average, i3 most effective with relatively short decay
constants, while Strategy 5, the maximum, is most effective with
relatively long decay constants.

Jeffress (1967) reported that for the case when the bandwidth of the
initial filter is 50 Hz, the non-linearity is a half«wave rectifier, and
the decay constant of the integrator is 1 ms, the model is roughly
equivalent to an Envelope Detector. To obtain a value of the decision
variable, Jeffress sampled the output of the model at the end of the
signal interval (Strategy 3). The results of this form of the Envelope
Detector are shown in the first line of Tables 4.1 through U4.4. As can be
seen, the model with this strategy is not particularly effective at
predicting the data of any of the subjects. However, Strategy 1,
averaging the output of the integration stage over the signal interval,
proved to be effective. The results for this form of the model are shown
in the second line of each table. Jeffress (19¢7, 1968} found that when
the decay constant of the integrator is increased to 50 or 100 ms, the
model is better able to fit some of the data. The results for several
forms of this Leaky Integrator model can be seen in the tables. When a
50-Hz bandwidth for the filter and a 50-ms decay constant for the
integrator are employed, sampling the output of the model near the end of
the signal interval (Strategy 3) is relatively effective. However, as can
be seen, using the maximum value of the output of the integrator during

the stimulus interval (Strategy 5) proved to be even more effective. The
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MODEL
Envelo
Envelo
Leaky
Leaky
Leaky
Leaky
Leaky
Energy
Energy
*Model
Model
Freque

Tempor

TABLE 4,1

Parameters of various models and R2 obtained
between the data of subject SG and each model

pe

pe
Integrator
Integrator
Integrator
Integrator

Integrator

1
2
ncy Weight

al Weight

10 Log(E/No)=8.5 dB

BAND-
WIDTH

50
50
50
50
50
75
75
25
25
50
50

(* --

Hz
Hz
Hz
Hz
Hz
Hz
Hz
Hz
Hz
Hz

Hz

NON~
LINEARITY

Half-wave
Half~-wave
Half—wave
Half-wave
Half-wave
Half-wave
Half-wave
Square-law
Square-~law
Half-wave

Half-wave

DECAY

CONSTANT

1
1
50
50
100
50
100
.01
.01
.01

200

Best fitting model)

ms

ms

ms

ms

ms

ms

ms

ms

ms

ms

ms

SAMPLING
STRATEGY

3
2
3
5

R2
.132
.709
.652
.661
.689
.653
L674
.681
.T01
.T16
.692
. 780
.718



TABLE 4.2

Parameters of various models and R® obtained
data of subject CV and each model

between the

MODEL

Envelope
Envelope

Leaky Integrator
Leaky Integrator
Leaky Integrator
Leaky Integrator
Leaky Integrator
Energy

Energy

Model 1
#Model 2
Frequency Weight

Temporal Weight

(*

10 Log(E/No)=8.5 dB

BAND-
WIDTH

50
50
50
50
50
75
75
50
25
50
50

Hz
Hz
Hz
Hz
Hz
Hz
Hz
Hz
Hz
Hz

Hz

NON=-
LINEARITY

Half-wave
Half-wave
Half-wave
Half-wave
Half-wave
Half-wave
Half-wave
Square-law
Square=law
Half~-wave

Half-wave

DE

CONSTANT

1
1
50
50

100
50

100

.01

.01

.01

200

best fitting model)

CAY

ms

ms

ms

ms

ms

ms

ms

ms

ms

ms

ms

SAMPLING
STRATEGY

3
2

Vi g W

™ 3

Re
.115
.687
612
.619
.676
.613
.663
.661
.661
.690
.693
.TU5
. 733



MODEL
Envelo
Envelo
Leaky
Leaky
#Leaky
Leaky
Leaky
Energy
Energy
Model
Model
Freque

Tempor

TABLE 4,3

Parameters of various models and R2 obtained
between the data of subject TW and each model

pe
pe
Integrator
Integrator
Integrator
Integrator

Integrator

1
2
ncy Weight

al Weight

(*

10 Log(E/No)=8.5

BAND-
WIDTH

50
50
50
50
50
75
75
50
50
50
50

Hez
Hz
Hz
Hz
Hz
Hz
Hz
Hz
Hz
Hz

Hz

NON-
LINEARITY

Half-wave
Half-wave
Half-wave
Half-wave
Half-wave
Half-wave
Half-wave
Square-law
Square-=law
Half-wave

Half-wave

DE

CONSTANT

1
1
50
50

100
50

100

.01

.01

.01

200

best fitting model)

CAY

ms

ms
ms
ms
ms
ms
ms
ms
ms
ms

SAMPLING
STRATEGY

L% 2 LS Y R P N |\t

-—b

n

Ré
. 104
«515
.502
.540
555
.525
.522
U495
+505
.521
542
.587
.618



TABLE 4.4

Parameters of various models and R2 ocbtained
between the data of subject JM and each model
10 Log{(E/No)=8.5 dB

BAND- NON- DECAY SAMPLING
MODEL WIDTH LINEARITY CONSTANT STRATEGY R2
Envelope 50 Hz Half-wave 1 ms 3 .033
Envelope 50 Hz Half-wave 1 ms 2 425
Leaky Integrator 50 Hz Half-wave 50 ms 3 .376
Leaky Integrator 50 Hz Half-wave 50 ms 5 LU01
Leaky Integrator 50 Hz Half-wave 100 ms 5 LU07
Leaky Integrator 75 Hz Half-wave 50 ms 5 .399
Leaky Integrator 75 Hz Half-wave 100 ms 5 .380
Energy 25 Hz Square-law .01 ms 1 .386
Energy 25 Hz Square-law .01 ms 2 L4408
sModel 1 50 Hz Half-wave .01 ms 2 .u28
Model 2 50 Hz Half-wave 200 ms 5 L401
Frequency Weight 577
Temporal Weight .482

(* ——- best fitting model)



following three 1lines of the tables show values of R2 for the Leaky
Integrator with other combinations of bandwidth and decay constgnt which
have previously been considered by Jeffress (Strategy 5 is employed in
all cases). For each subject, the combination of a 50-Hz bandwidth and a
100-ms decay constant proved to be the most effective form of the Leaky
Integrator. It should be noted that although the bandwidths employed here
are similar to those used by Jeffress (1967, 1968), the actual shapes of
the filters are quite different. Here, a single-tuned filter has been
used for both the 50-Hz and 75-Hz bandwidths, Jeffress employed a
"steep-sided" 50-Hz bandpass filter and an asymmetric 78-Hz wide filter,
which was formed by subtracting the output of a steep 525-Hz low-pass
filter and a steep 500-Hz low-pass filter. Although different filter
shapes have not been studied in the work reported here, it seems
reasonable to assume that changes in the shape of the initial filter
would have some influence on the values of R2.

All of the results shown in Figures 4.1 through 4.4 were obtained
using a half-wave rectifier as the nonlinear stage of the model., As
stated in the Introduction, the nonlinear stage of an Energy Detector is
a square-law device. The results for this case are shown in Figures 4.5
through 4.8. The values of R® are for a 10 Log(E/No) equal to 8.5 dB. The
open symbols show the results for the square~law device with the decision
variable, X', equal to the average output of the integration stage over
the signal interval (Strategy 2). For comparison, the filled symbols show
the results for the half-wave rectifier and Strategy 2, shown previously
in Figures 4.1 through U4.4. As can be seen, the curves for these two
cases are quite similar. The curves for the square-law device tend to
peak at lower bandwidth than those obtained with the half-wave rectifier.

For three out of four subjects, slightly higher values of R2 are found at
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Figure 4.5, Rz as a function of the bandwidth of the filter and the decay
constant of the integrator. The filled symbols are for a half-wave
rectifier. The open symbols are for a square-law device. In the upper
panel, the decay constant of the integrator was .01 ms. In the lower
panel, the bandwidth of the filter was 50 Hz. All values are for a 10

Log(E/No) of 8.5 dB and Strategy 2. The results shown are for subject SG.
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Figure 4.6, R2 as a function of the bandwidth of the filter and the decay
constant of the integrator. The filled symbols are for a half-wave
rectifier, The open symbols are for a square-law device. In the upper
panel, the decay constant of the integrator was .01 ms. In the lower
panel, the bandwidth of the filter was 50 Hz. All values are for a 10

Log{(E/No) of 8.5 dB and Strategy 2. The results shown are for subject CV.
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Figure 4.7. R2 as a function of the bandwidth of the filter and the decay
constant of the integrator. The filled symbols are for a half-wave
rectifier. The open symbols are for a square-law device. In the upper
panel, the decay constant of the integrator was .01 ws. In the lower
panel, the bandwidth of the filter was 50 Hz, All values are for a 10

Log(E/No) of 8.5 dB and Strategy 2. The results shown are for subject TW.
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Figure 4.8, R2 as a function of the bandwidth of the filter and the decay
constant of the integrator. The filled symbols are for a half-wave
rectifier. The open symbels are for a square-~law device, In the upper
panel, the decay constant of the integrator was .01 ms. In the lower
panel, the bandwidth of the filter was 50 Hz. All values are for a 10

Log(E/No) of 8.5 dB and Strategy 2. The results shown are for subject JM.
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25 Hz than at 50 Hz. The highest value of R2 obtained by the square-law
device is almost as high as that obtained by the half-wave rectifier.
However, for all subjects the half-wave rectifier proved to be more
effective at predicting their responses. For the typical configuration of
the Energy Detector, the integration stage of the model is assumed to be
a true integrator. As mentioned previously, true integration can be
accomplished within the current model by providing the integration stage
with a very short decay constant (effectively removing this stage from
the model) and allowing the integration to be performed by the sampling
strategy. Either Strategy 1, averaging over the stimulus interval, or
Strategy 2, averaging over the signal interval, is appropriate. The
results for both of these cases are shown in Tables 4,1 through 4.4, In
both cases, the bandwidth shown is the one which leads to the maximum
value of Ra.

The Envelope Detector, the Leaky Integrator and the Energy Detector
all predict the data relatively well. The differences in R2 between the
models are, in general, fairly small. For three out of four subjects, the
combination of an Envelope Detector and Strategy 2, averaging over the
signal interval, yielded the highest value of R2 for any of the models
thus far considered. For subject TW, the Leaky Integrator with the 50-Hz
bandwidth and 100-ms decay constant proved to be the most effective

2 could be increased, relative to

model. For each subject, the value of R
that obtained by the combination of an Envelope Detector and Strategy 2,
by shortening the decay constant of the integrator to .01 ms (i,e.,
removing the integration stage from the model). This particular
configuration: 50-Hz wide single-tuned filter, half-wave rectifier,
Integrator with a .01-ms decay constant and Strategy 2; will be referred

to as Model 1. For two subjects, this model proved to be the most
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effective configuration of the general model of Jeffress (1967). For two
subjects, a closely related configuration: 50-Hz wide single~tuned
filter, half-wave rectifier, integrator with a 200-ms decay constant and
Strategy 5; yielded somewhat larger values of Ra. This configuration will
be referred to as Model 2. Although Model 1 is able to predict the data
of subject CV nearly as well, Model 2 is best able to predict her data.
The results for both Model 1 and Model 2 can be seen in Tables 4.1
through 4.4, As mentioned previously, for subject TW the best-fitting
form of the model is the Leaky Integrator with a bandwidth of 50 Hz and a
decay constant of 100 ms.

All of the models shown in Tables 4,1 through 4.4 correlate about
equally well with the data. That is, the changes in parameters suggested
by these m&déls have relatively minor influences oh the value of R2. This
can also be seen from an inspection of Figures 4.1 through 4.8. Although
the curves relating R2 to the bandwidth of the filter tend to peak at
50 Hz, bandwidths between 25 Hz and 100 Hz all predict the data
relatively well. Further, changes in the decay constant, which range over
several orders of magnitude, make only mincr changes in the value of R2.
There are several possible explanations for the insensitivity of the
model-fitting procedures to changes in the parameters of the general
model, If, for example, the bandwidth used by the subject varied from
trial to trial, we might expect that the average bandwidth would predict
the data most accurately., However, other bandwidths within the range used
by the subject might predict the data almost as well. As a result, flat
curves like those seen in Figures 4.1 through 4.4 would be expected. A
second explanation, which is also compatible with the fact that the
values of R2 obtained are relatively low, is that the "true" model of

auditory detection is quite different from any of the models we have
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investigated, and therefore the models tested fit the data about equally
poorly. On the other hand, the fact that so many models can be
incorporated within the singie structure suggested by Jeffress (1967)
indicates that these models are relatively similar. If the outputs of the
models are highly correlated, then the correlations between each of the
models and the subject will be similar. Thus, there are at least three
possible explanations of the general model's apparent insensitivity to
parametric manipulations, First, there may be a problem in the data which
are being modeled (i.e., they may be influenced by some form of internal
variability). Second, there may be a problem in the models which are
being applied to the data (i.e., their structure may not be adequate to
the task of modeling the auditory system). Third, the techniques used to
determine the best-fitting model may themselves be relatively insensitive
(i.e., large changes 1in R2 may not be expected when manipulating
parameters over a moderate range). It is difficult to establish a priori
if these factors are influencing the results reported here, or even to
determine exactly what the effects of these factors would be if they were
present.

One way to obtain a better understanding of these issues is to
attempt to model a known system rather than a human subject, Thus far the
system to be investigated has been the human subject. We can, however,
replace the human with Model 1, as the system to be investigated, and
then generate curves for Model 1 like those which were shown for the
human subJects in Figures 4,1 through 4.4, Remember, Model 1 is a fixed
parameter model composed of: a 50-Hz filter, a half-wave rectifier, an
integration stage which has functionally been removed from the circuit,
and a sampling strategy which averages over the signal interval

(Strategy 2). If the curves relating bandwidth to R2 with Mcdel 1 as the
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system to be investigated are flat like those found for human subjects,
then the possibility that the bandwidth used by the subject varies from
trial to trial need not be introduced; the bandwidth of Model 1 is fixed.
Further, the structure of the models considered here are certainly
adequate to the task of modeling Model 1. Indeed, one combination of
parameters will fit Model 1 perfectly. Similarly, the output of Model 1
cah be related to the outputs of each of the models reported in Tables
4.1 through 4.4, thereby generating such a table for Model 1. Again, if
we find that all the models are reasonably well able to predict the data
of Model 1, then the similar ability of these models to predict the data
of the human subjects would not be surprising.

Figures 4.9 and H.10Nshow curves like those in Figures 4.1 through
4,4 except they are computed with Model 1 as the system to be
investigated. The results in Figure 4.9 are for 10 Log(E/No) equal to
8.5 dB, while the results in Figure 4.10 are for 10 Log(E/No) equal to
11.5 dB., As in the figures for individual subjects, the filled symbols
are for the case where X' is equal to the average value of the output of
the integration stage over the signal interval (Strategy 2). The open
symbols are for the case where X' is equal to the maximum value of the
integration stage during the stimulus interval (Strategy 5). In the upper
panel, the filled symbols are with the decay constant of the integration
stage equal to .01 ms (i.e., the waveform passes through the integration
stage unaltered). The unfilled symbols are with the decay constant of the
integration stage equal to 200 ms. In the lower panel, the bandwidth of
the initial filter is fixed at 50 Hz for both curves. Like those for the
human subjects, these curves show a rather flat response as a function of
the bandwidth of the initial filter. Again, both curves peak at a 50-Hz

bandwidth, but bandwidths between 25 Hz and 100 Hz all predict the output
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Figure 4.9, R2

as a function of the bandwidth of the filter and the decay
constant of the integrator. Filled symbols are for Strategy 2. Open
symbols are for Strategy 5. In the upper panel, the decay constant of the
integrator has been‘fixed at .01 ms for the filled symbols, and 200 ms
for the open symbols. In the bottom panel, the bandwidth of the filter
has been fixed at 50 Hz for both filled and open symbols. All points were
obtained with 10 Log(E/No) equal to 8.5 dB. The results shown are for

Model 1 as the system to be investigated.
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Figure 4.10. B2

as a function of the bandwidth of the filter and the
decay constant of the integrator. Filled symbols are for Strategy 2. Open
symbols are for Strategy 5. In the upper panel, the decay constant of the
integrator has been fixed at .01 ms for the filled symbols, and 200 ms
for the open symbols, In the bottom panel, the bandwidth of the filter
has been fixed at 50 Hz for both fiiled and open symbols. All points were
obtained with 10 Log(E/No) equal to 11.5 dB. The results shown are for

Model 1 as the system to be investigated.
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of Model t relatively well, The curves obtained at a 10 Log(E/No) of
11.5 dB are even flatter than those obtained at a 10 Log(E/No) of 8.5 dB.
These results indicate that the value of R2 is not dramatically affected
by small changes in the bandwidth of the initial filter even when the
system under investigation has a fixed bandwidth. Therefore, it is not
necessary to assume a variable bandwidth to exﬁlain the bandwidth curves
for human subjects shown in Figures 4,1 through 4.4, Similarly, the flat
curves obtained for Model 1 cannot be explained by assuming that no
combination of parameters is adequately predicting the output of Model 1.
One combination is predicting perfectly. Considering the data in the
lower panels of Figures 4.9 and 4.10, it can be seen that changes in the
value of the decay constant over several orders of magnitude may have a
minimal effect on the value of R2. Those regions of the curves where
relatively large changes in R2 are observed are the same regions where
relatively large changes were observed for human subjects. The ability of
the various models to predict the data for Model 1 is shown by the values
of R2 in Table 4,5. Most of the models are able to predict the outputs of
Model 1 relatively well. Further, the values of R2 for most of the models
are reasonably similar.

The results from Figures 4.9 and 4.10 and from Table 4.5 demonstrate
that even for the case of a fixed parameter ("“noiseless") subject, like
Model 1, many different models predict the data well. The techniques
employed are not particularly sensitive to changes in the parameters
under investigation, and the outputs of the models are highly correlated.
Additional insights into the data of the human subjects can be gained by
a more thorough investigation of Model ?t as a system to be modeled.
Ahumada and his associates (Ahumada, 1967; Ahumada and Lovell, 1971; and

Ahumada, Marken and Sandusky, 1975) have consistently found differences
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between signal-plus-noise trials and noise-alone trials. First, their
ability to predict responses on noise-alone trials is almost always less
than their ability to predict responées on signal-plus-noise trials.
Second, bandwidth estimates obtained for noise-alone trials tend to be
wider than those obtained for signal-plus-noise trials. The models
considered here have alsoc been less able to predict responses on
noise-alone trials. However, bandwidth estimates are at most slightly
wider on noise-alone trials than on signal-plus-noise trials. Ahumada has
argued that a model composed of a bank of several relatively narrow
filters should be able to predict the data. The decision variable for
this "filter-=bank" model is functionally related to the magnitude of the
largest output of any filter within the bank. Ahumada and his associates
have found relatively little support for such a model within their data.

Can either of these discrepencies between noise-~-alone and
signal-plus-noise trials be captured by a single-filter model 1like
Model 1? The answer apears to be yes. Figures 4.11 and 4.12 show curves
similar to those shown in Figure 4.9, Again, the outputs of Model 1 have
replaced the subject's data in the model-fitting process. Here, however,
the square symbols show the results when only signal-plus-noise trials
are considered, while the triangular symbols show the results when only
noise-alone trials are considered. Strategy 2, averaging over the signal
interval, has been used to compute the decision variable, X', for all of
the curves in Figure 4.11. In the upper panel, the decay constant of the
integration stage has been fixed at .01 ms; in the lower panel, the
bandwidth of the filter has been fixed at 50 Hz. In Figure 4,12, X' is
equal to the maximum output of the integration stage (Strategy 5). In the
upper panel, the decay constant has been fixed at 200 ms; in the lower

panel, the bandwidth of the filter has been fixed at 50 Hz. In the upper
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Figure 4,11, R2

as a function of the bandwidth of the filter and the
decay constant of the integrator. Square symbols are for
signal-plus-noise trials. Triangular symbols are for ncise-alone trials.
All results are for 10 Log(E/No) equal to 8.5 dB and Strategy 2. In the
upper panel, the decay constant of the integrator has been fixed at
.01 ms. In the bottom panel, the bandwidth of the filter has been fixed
at 50 Hz for both filled and open symbols. The results shown are for

Model 1 as the system to be investigated.
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Figure 4.12. R2 as a function of the bandwidth of the filter and the
decay constant of the integrator, Square symbols are for
signal-plus-noise trials. Triangular symbols are for noise-alone trials.
411 results are for 10 Log{E/No) equal to 8.5 dB and Strategy 5. In the
upper panel, the decay constant of the integrator has been fixed at
200 ms. In the bottom panel, the bandwidth of the filter has been fixed
at 50 Hz for both filled and open symbols. The results shown are for

Model 1 as the system to be investigated.
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panel of Figure U4.11, the two curves are constrained to reach a value of
unity when the bandwidth is equal to 50 Hz, At 50 Hz the model being fit
to the system is the same as the system to be modeled (Model 1). However,
it can be seen that while small changes in bandwidth have relatively
little effect on the value of R2 obtained on signal-plus-noise trials, R2
drops relatively rapidly ﬁhen the bandwidth is varied from 50 Hz. The
results shown in the lower panel depict a similar result when the decay
constant is varied from .01 ms. Again, both curves are constrained to
reach a value of unity when the decay constant is .01 ms. As the decay
constant is varied away from .01 ms, the values of R2 are slightly, but
consistently, smaller for noise-alone trials than for signal-plus-noise
trials. The results shown in Figure 4,12 show similar discrepancies
between the accuracy of predictions on signal-plus-noise and noise-alone
trials. Notice the large discrepancy between the values of R2 even at the
50-Hz bandwidth. Here the values of R2 have been computed between Model 1
and Model 2. Remember the decision variable for Model 1, the system under
investigation, 1is equal to the "true" integral of the filtered and
half-wave rectified waveform over the signal interval, while the decision
variable for Model 2, the model being fit to the data of the system under
investigation, is approximately equal to the "true" integral of the
filtered and half-wave rectified waveform over the stimulus interval, As
was shown in Table 4,5, these models are very similar, yielding a value
of R2 of .915 across all trials. However, on signal-plus-noise trials,

the value of R%

is .843, and on noise-alone trials, the value is only
.729, These results indicate that wunless the model fits the data
perfectly, discrepancies between the values of R® obtained on
signal-plus-noise and noise-alone trials would be the typical result.
Further, these discrepancies occur even when the data are generated by a

relatively simple, single-channel model like Model 1.
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The results shown in Figures 4.1% and 4.12 do not lead to different
estimates of the bandwidth on signal-plus-noise and noise-alone trials.
However, notice that thé shapes of both curves are asymmetric. Further,
the curve for signal-plus-noise trials tends to reach somewhat higher
values at narrow bandwidths, while the curve for noise-alone trials tends
to reach higher values at wider bandwidths. Hence, although both curves
peak at 50 Hz, if there were any error in the bandwidth estimate, we
would expect the erroneous estimates on signal-plus-noise trials to tend
towards narrower bandwidths, while the erroneous estimates on noise-alone
trials would tend towards wider bandwidths.‘ The resultant discrepancy
would be in agreement with the bandwidth estimates of Ahumada and his
associates,

Although the pattern of results obtained with Model 1 as the system
to be investigated is fairly similar to the results observed for human
subjects, the absolute ability of the models to predict the data for the
human subjects is much less., Even the "best-fitting" model for each
sub ject ig able to explain only a relatively small proportion of the
variability in the responses of subjects., Do these small values of R2
indicate that the model is not fitting the data very well and that,
potentially, a better one could be found? Or do they indicate that the
model is fitting the data relatively poorly because there is a large
error component in the data, and that the predictable component of the
data is therefore relatively small? In order to obtain an estimate of how
much predictable variance is present in the subjects data, split-half
correlations were computed between data obtained from alternate blocks at

the same signal-level, The values of ré

and r for each subject at
10 Log(E/No) equal to 8.5 dB are shown in Table 4.6, As can be seen,

these values are large when compared to the the values of R2 obtained
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~ TABLE 4.6
Split-half correlations, rZ and (r), between

data collected on alternate blocks of trials
10 Log(E/No)=8.5 dB

SG cv TwW JM

931 .882 . 964 .891
(.965) (.939) (.982) (.944)



between the subjects and the models. Further, subject TW, whose data were
quite difficult to predict (R2=.555). has the 1largest split-half
correlation, while subject CV, whose data were relatively easy to predict
(R2=.693). has the smallest split-half correlation,

These split-half correlations would suggest that a considerable
portion of the variance in the subjects' data is potentially predictable.
In an attempt to explain this residual variance, a multiple component
model similar to that employed by Ahumada and Lovell (1971} and Ahumada,
et al, (1975) was applied to the data. The decision variable of the
present multiple component model was based on the output of seven 50-Hz
wide single-tuned filters, The filters differed only in center frequency.
The seven center frequencies were 350 Hz, U400 Hz, 450 Hz, 500 Hz ,
550 Hz, 600 Hz, and 650 Hz. Each filter was followed by a half-wave
rectifier, The output of each rectifier was averaged over the signal
interval. The logarithm of a linear combination of these seven values was
converted to a P'(Y) using the logistic function. The weighting
coefficients of the linear combination and the parameters of the logistic
function were chosen to minimize the squared differences between the
P(Y)s and the P'(Y)s. As before, STEPIT was used to obtain this
least-squares fit. The resultant weightings for each subject are shown in
the upper panels of Figures 4.13 through 4.16. As Ahumada, Marken and
Sandusky (1975) found for their subjects, and Ahumada and Lovell (1971)
found for some of their subjects, negative weightings were found at some
frequencies for all subjects. This would suggest that subjects might be
making a comparison between the information at the signal frequency and
the information present at other frequencies.

A second multiple component model was also fit to the data. In this

case, the output of a single filter followed by a half-wave rectifier was
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Figure 4,13, Best-fitting weights for the multiple-component models
described in the text. The square symbols are for a 10 Log(E/No) of
8.5 dB. The circular symbols are for a 10 Log(E/No) of 11.5 dB. In the
lower panel, the two arrows indicate the time of the onset and the offset

of the signal. The results shown are for subject SG.
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Figure 4,14, Best-fitting weights for the multiple-component models
described in the text. The square symbols are for a 10 Log(E/No) of
8.5 dB. The circular symbols are for a 10 Log(E/No) of 11.5 dB. In the
lower panel, the two arrows indicate the time of the onset and the offset

of the signal. The results shown are for subject CV,
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Figure 4.15. Best-fitting weights for the multiple-~component models
described in the text. The square symbols are for a 10 Log(E/No) of
8.5 dB. The circular symbols are for a 10 Log(E/No) of 11.5 dB. In the
lower panel, the two arrows indicate the time of the onset and the offset

of the signal. The results shown are for subject TW.
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Figure U4.16, Best-fitting weights for the multiple-component models
described in the text. The square symbols are for a 10 Log(E/No) of
8.5 dB. The circular symbols are for a 10 Log(E/No) of 11,5 dB, In the
lower panel, the two arrows indicate the time of the onset and the offset

of the signal. The results shown are for subject JM.
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used to predict the data. However, the output was averaged over seven
sub-intervals of the stimulus interval. The Ilogarithm of a linear
combination of these seven values was converted to a P'(Y) using the
logistic function, As before, STEPIT was used to obtain a least-squares
fit to the data of each subject. The resultant weights are shown in the
lower panels of Figures 4.13 through 4.16. The small arrows indicate the
approximate time of the onset and qffset of the signal. As Ahumada,
Marken and Sandusky (1975) found for their subjects, the subjects tend to
give negative weights_to information which occurs immediately before the
signal interval. Ahumada, et al. had used a 500-ms burst of noise and
found that negative weights were given to the 100-ms interval of noise
immediately before the onset of the signal. The preseni result is
somewhat surprising given that the total duration of the noise burst in
the present experiment was 148 ms and the portion of this noise which
occurred before the signal onset was only 20 ms in duration. These result
would suggest that the subject may be using the non-signal-carrying
temporal fringe of the waveform to compare to the signal interval even
with relatively short bursts of noise.

Some caution should be taken in interpreting these results. First,
the weighting functions are not totally consistent across subjects, The
frequency weightings, for example, show maximum positive peak at 500 Hz
and consistent negative weightings at 650 Hz, but vary across subjects at
the other frequencies. The temporal weighting functions show negative
weightings before the signal interval and rise throughout most of the
first half of the signal interval, but yield inconsistent weightings
across subjects during the second half of the waveform. Adding these
weighting functions to the model does produce an increase in explained

variance. For subject JM, the increase in R2 is fairly large, about .15.
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For the other subjects, the increase is smaller, approximately .06 (see

Tables 4.1-4,4),
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Footnote
3. Because the number of responses to each sample was not always the
same across conditions, each squared deviation was weighted by the
average number of responses obtained from the particular subject

under the particular condition. These values can be seen in Table

A1,1 of Appendix A1,
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Chapter 5

Summary and Conclusions

Before reviewing the results and conclusions from the previous
chapters, it is important to consider the relationship between the
molecular data presented here and more traditional views of masking. In
the clagsical literature, masking phenomena have been described under
the assumption that the signal and the masker are separable entities.
Fletcher (1953, p. 153) argued that when a set of neural fibers was
busy carrying information about the masker, that "such nerve fibers
then can no longer be used to carry any other message to the brain...".
Geldard (1972, p. 215), on the other hand, spoke of the "suppressive
influence" of the masker upon the signal. Licklider (1951, p.-1005)
pointed out that masking 1s the "opposite of analysis; it represents
the inability of the auditory mechanism to separate the tonal
stimulation into components and to discriminate between the presence
and the absence of one of them" (Note 4). In these views, the
differences among maskers are characterized by their ability to
interfere with the signal. Differences among signals are similarly
characterized by their ability to elude the influence of the masker.

The present data are best interpreted with a somewhat different
view of masking. An examination of Figures 3.5 through 3.8 reveals that
the probability that the subject will ideﬁtify a particular sample of
noise (a particular masker) as containing a signal varies widely
depending on which masker has been selected. This variability exists
not. only for the case where the signal is present, but also on trials
during which only the noise 1is present. With the classic view of

masking, it is difficult to determine the amount of masking that has
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occurred, Can one, for example, explain ¢the wide variation in
false-alarm rates as resulting from differences in the amount of
masking of a non-existent signal? Evea on signal=-plus-noise trials,
identifying the effects of masking may be difficult. Consider, for
example, Sample.6 in Figure 3.5. Is Sample 6 an ineffective masker? The
hit rate for Sample 6 is fairly high, nearly .5. On the other hand, its
false-alarm rate is even higher. That is, more than 50 percent of the
responses made to sample 6 are incorrect. A further complication for
this classic view of masking can be seen by examining Figure 3,9. If,
as indicated by Fletcher (1953), the role of the masker is to block the
signal on the transmission lines to the brain, then it is difficult to
postulate a mechanism for the phase effects reported here, Or if, as
stated by Geldard (1972), the masker has a "suppressive influence" on
the signal, by what mechanism does it differentially suppress signals
with different starting phases? It is clear, from a consideration of
the physics involved, that the waveform that is presented to the
subject on signal-plus-noise trials is not twc stimuli, but one.
Similarly, we would not think of the power in the waveform as being the
sum of the signal power and the masKer power. Since the duration of the
signal is reasonably long, the total power will be determined, to a
good approximation, by the power in the vector sum of the amplitude of
the 500-Hz component in the signal and the amplitude of the 500-Hz
component in the noise {(Note 5). Hence, rather than the flat functions
predicted by a power sum, the power in the resultant waveform changes
cyclically as a function of Alpha. These cyclic changes can be seen
both in the stimulus measurements (the lower panels of Figure 3.9) and

the human performance (the upper panels of Figure 3.9).
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Thus, using the molecular data it has been difficult to specify
the amount of masking. It is more reasonable to quantify the amount of
masking on a molar level as the change in signal-level necessary to
maintain a constant P(C)max when the masker is added. Although this is
an adequate quantification of masking, it is a completely inadequate
definition of masking. As Tanner (1958) pointed out, there are a
variety of cases where the addition of a stimulus alters the
detectability of another stimulus in a manner we would not typically
refer to as masking. As was mentioned in the introduction, presenting a
weak pedestal at the same frequency as the signal may actually increase
the detectability of a tone in a background of noise., Typically, we
would not consider this effect as masking.

The signals presented here have been masked by the noise. If the
mechanism of masking cannot be seen on the molar level, perhaps it will
be revealed by a deeper evaluation of the molecular data. Again,
consider the data in Figures 3.5 through 3.8. As has been discussed, a
broad range of both hit and false-alarm rates was obtained. Many of the
noise-alone samples have the property of "sounding" like
signal-plus-noise, while at the same time, many of the
signal-plus-noise stimuli "sound" like noise alone. As has been pointed
out before, within the Theory of Signal Detectability, the detector is
thus forced to adopt a strategy such that either some noise-alone
samples will be 1identified as <containing signals, or some
signal-plus-noise samples will be identified as noise-alone. Thus,
masking occurs. When the noise level 1s decreased, the overlap between
the signal-plus-noise and nolse-alone samples decreases and the amount
of masking decreases. As the level of the noise is increased, the

amount of overlap increases, as does the amount of masking. The data
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from the lower panel of Figure 3.9 indicate that this problem is more
than a simple failure of analysis, as normally defined. Even if the
observer considered only the power in the 500-Hz component, that is, if
he were able to perform a complete analysis in the frequency domain, it
would not be possible to discriminate perfectly between noise-alone and
signal-plus-noise trials.

The models under consideration here do not assume that the noise
interferes with the signal. They do, however, predict the overlap
between noise-alone and signal-plus-noise samples. That is, the output
decision variable, X', for the models is sometimes greater on
noise-alone trials than on signal=plus-noise trials., The models were in
many cases able to predict below-chance performance for particular
samples. Further, as would be expected, given that all of the models
considered give maximum weight to the 500-Hz component, the models are
able to capture the c¢yclic changes in performance as a function of
Alpha.

The best-fitting model did not simply consider the 500-Hz
component. It was found that models with approximately al 50-Hz
bandwidth were best able to predict performance. However, bandwidths
between 25 and 100 Hz were able to predict the data relatively well,
Small changes in the estimated bandwidths were associated with changes
in other model parameters, most particularly the form of the nonlinear
stage.

The models were best able to predict the performance of subjects
when the nonlinear stage was a half-wave rectifier. However, changing
the nonlinearity to a square-~law device (the only other nonlinearity

considered), caused only a minimal decrement in the value of R2.
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Within the current approach, the decay constant of the integrator
interacted with the sampling strategy applied to the integrator output,
Because many of the sampling strategies considered computed the average
value of the integrator output over particular intervals of the
stimulus waveform, the resultant value of X' is roughly proportional to
the double integral of the input to the integration stage.
Configurations that were best able to predict the data produced values
of X' that were more nearly proportional to the single integral of the
input to the integrator. These configurations either minimized or
eliminated the integration performed by the integration stage (i.e.,
reduced its decay constant to near zero) or else employed sampling
strategies that performed 1little or no averaging. Because of these
interactions, it is difficult to specify the exact integration time of
the system. However, a value of 100 to 200 ms seems appropriate.
Similarly, it is-difficult to determine the best approximation to the
sampling strategy by which the system transforms the stream of acoustic
information into a decision variable.

In many cases, the effectiveness of the models was not strongly
influenced by changes in the parameters. Evaluation of the
effectiveness of the model in predicting the output of a known model
revealed that this insensitivity to parametric manipulations was not
necessarily caused by noise in the data to be fitted, nor did it
necessarily imply that the structure of the model was incompatible with
the system to be modeled,

A few methodological points should be noted. Ahumada (1967) used
techniques fairly similar to those employed here to estimate the
critical bandwidth of the system, The estimates derived here are quite

similar to other estimates of the c¢ritical bandwidth at 500 Hz.
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Nevertheless, the flat curves relating R2 to bandwidth indicate that
the ©bandwidth estimates derived by this technique may not be
particularly precise. The effects of manipulating the parameters of the
model are even less distinet when 10 Log(E/No) is increased from 8.5 dB
to 11.5 dB. Thus, parametric investigations should be conducted using
signal-to-noise ratios that are towards the low side of the practical
limits,

Estimating parameters on the molecular 1level does have one
distinct advantage over certain molar techniques. The distributicns of
outputs for several models are dependent only on the product of the
effective bandwidth (W) and the effective duration (T). Therefore, in
order to estimate either of these parameters on the molar level, it is
necessary to assume a value of the other. Such an assumption is not
required on a molecular level, These parameters are fairly independent.
A 50-Hz value of W 1is most effective in almost all situations.
Similarly, a value of 100 to 200 ms seems most appropriate for T.

The distinctions which Ahumada (1967), Ahumada and Lovell (1971},
and Ahumada, et al. (1975) have made between predictions on
signal=-plus-noise trials and noise-alone +trials can be explained
without recourse to a "filter-bank" model. When fitting the other
models to the outputs of Model 1, it was found that unless the fit was
exact, the models tend to have differential success at predicting
signal-plus-noise and noise-alone trials. Further, although the models
made correct estimates of the bandwidth on both signal-plus-noise and
noise-alone trials, it was argued that if there were any error in the
bandwidth estimates, the estimates on noise-alone trials would be
likely to tend toward wider bandwidths, whereas those on

signal-plus-noise trials would tend toward narrower bandwidths.
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Using a decision variable that was determined by the outputs of
seven filters that differed in center frequency gave some improvement
over the single filter case, Negative weightings were found at some
frequencies. Similarly, combining the output of a single filter over
seven 21,4-ms sub-intervals of the stimulus interval improved the
predictions of the model. In this case, negative weightings were given
to the sub=interval that immediately preceded the signal onset. The
fact that negative weightings were found gives some support to the
suggestion of Ahumada and Lovell (1971) and Ahumada et al. (1975) that
the subject might compare information in the signal-carrying part of
the waveform to information in the part of the waveform not carrying
the signal,

In summary, a molecular experiment was conducted that investigated
the detectability of a 500-Hz sinusoid in the presence of each of 25
different samples of white, approximately Gaussian, nolse, Signals at
each of four starting phase angles and at two levels were investigated.
The estimated probability of a "Yes" response to individual noise
samples was found to vary widely as a function of the noise sample
selected. This was true on both signal-plus-noise and noise-alone
trials. Manipulating the starting phase of the signal was also found to
have large effects on the probability of a "Yes" response. The general
form of the model of Jeffress (1967) was implemented as a series of
computer subroutines and fit to the data., The combination of a 50-Hz
wide single-tuned filter, followed by a half-wave rectifier and an
integrator with an integration time of 100 to 200 ms was found to fit
the data relatively well for all subjects., Slight variations in
parameters of the best-fitting model were found across subjects. The

proportion of variance explained by the model varied considerably
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across subjects, over a range from .43 to .72. Combining the outputs of
several models that differed in center frequency or integration
interval increased the proportion of predicted variance. Negative
welghtings were found at some frequencies and for some time intervals,
suggesting that the subject's decision might be based on a comparison

between information in different parts of the stimulus.
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b,

Footnotes

It is not completely clear what Licklider (1953) meant by

. "analysis." Here Fourier analysis is assumed, although this may not

5.

be an adequate representation of Licklider's views,

Because the duration of the signal is finite, its bandwidth is not
zero, Hence, vector sums described only at the 500~Hz component will
not be a completely adequate description of the change in power when

the signal 1s added to the noise.
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Appendix 1



. TABLE A1.1
The number of presentations (P) of each sample to each
subject under each condition and the average number of
responses to each sample from each subject under each
condition for signal-plus-noise trials (S) and for
noise~alone trials (N)

10 Log(E/No)=11,5 dB

SG cv ™ JM
P 130 136 136 198
Alpha=0 S 130 134 136 198
N 130 135 136 198
P 78 80 80 80
Alpha=90 S 78 79 80 80
N 78 79 80 79
P 88 128 128 178
Alpha=180 S 88 127 127 178
N 88 127 128 178
P 82 82 82 82
Alpha=270 S 82 82 82 82
N 82 82 82 81

10 Log(E/No)=8.5 dB
SG cv TW JM
P 130 136 136 198
Alpha=0 S 130 134 136 197
N 130 135 136 198
P 80 80 80 80
Alpha=90 S 80 79 80 80
N 80 79 80 78
P 90 128 128 178
Alpha=180 S 90 127 127 178
| N 90 127 128 178
P 80 82 80 80
Alpha=270 S 80 82 80 80
N 80 81 80 80
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Figure A2.1, Hit and false-zlarm rates obtained for individual samples
are shown in ROC space. Each number plotted shows the data for the sample
associated with that number. The square symbol shows the average hit rate
and false alarm rate across all samples. The data shown are for subject

SG and were collected with Alpha equal to 0.
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Figure A2.2., Hit and false-alarm rates obtained for individual samples
are shown in ROC space. Each number plotted shows the data for the sample
associated with that number. The square symbol shows the average hit rate
and false alarm rate across all samples. The data shown are for subject

SG and were collected with Alpha equal to 90.
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Figure A2.3. Hit and false-alarm rates obtained for individual samples
are shown in ROC space. Each number plotted shows the data for the sample
assoclated with that number. The square symbol shows the average hit rate
and false alarm rate across all samples, The data shown are for subject

SG and were collected with Alpha equal to 180,
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Figure A2.4., Hit and false-alarm rates obtained fbr individual samples
are shown in ROC space., Each number plotted shows the data for the sample
associated with that number. The square symbol shows the average hit rate
and false alarm rate ecross zll samples. The dsta shown are for subject

SG amd were collected with Alpha equal to 270,
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Figure A2.5. Hit and false-alarm rates obtained for individual samples
are shown in ROC space. Each number plotted shows the data for the sample
assoclated with that number., The square symbol shows the average hit rate
and false alarm rate across all samples. The data shown are for subject

CV and were collected with Alpha equal to O,
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Figure A2.6. Hit and false-alarm rates obtained for individual samples
are shown in ROC space. Each number plotted shows the data for the sample
associated with that number. The square symbol shows the average hit rate
and false alarm rate across all samples. The data shown are for subject

CV and were collected with Alpha equal to 90.
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Figure A2.7. Hit and false-alarm rates obtéined for individual samples
are shown in ROC space. Each number plotted shows the data for the sample
associated with that number. The square symbol shows the average hit rate
and false alarm rate across all samples. The data shown are for subject

CV and were collected with Alpha equal to 180.
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Figure A2.8. Hit and false-alarm rates obtained for individual samples
are shown in ROC space. Each number pleotted shows the data for the sample
assoclated with that number. The square symbol shows the average hit rate
and false alarm rate across all samples. The data shown are for subject

CV and were collected with Alpha equal to 270.
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Figure A2.9. Hit and false-alarm rates obtained for individual samples
are shown in ROC space., Each number plotted shows the data for the sample
associated with that number. The square symbol shows the average hit rate
and false alarm rate across all samples. The data shown are for subject

TW and were collected with Alpha equal to O.
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Figure A2.,10., Hit and false-alafm rates obtained for individual samples
are shown in ROC space. Each number plotted shows the data for the sample
associated with that number. The square symbol shows the average hit rate
and false alarm rate across all samples. The data shown are for subject

TW and were collected with Alpha equal to 90.
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Figure A2,11, Hit and false-alarm rates obtained for individual samples
are shown in ROC space. Each number plotted shows the data for the sample
assocliated with that number. The square symbol shows the average hit rate
and false alarm rate across all samples. The data shown are for subject

TW and were collected with Alpha equal to 180.
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Figure A2,12, Hit and false-alarm rates cbtained for individual samples
are shown in ROC space, Each number plotted shows the data for the sample
associated with that number. The square symbol shows the average hit rate
and false alarm rate across all samples. The data shown are for subject

TW and were collected with Alpha equal to 270.
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Figﬁre A2,13, Hit and false-alarm rates obtained for individual samples
are shown in ROC space. Each number plotted shows the data for the sample
associated with that number. The square symbol shows the average hit rate
and false alarm rate across all samples. The data shown are for subject

JM and were collected with Alpha equal to O,
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Figure A2.14, Hit and false-alarm rates obtained for individual samples
are shown in ROC space. Each number plotted shows the data for the sample
associated with that number., The square symbol shows the average hit rate
and false alarm rate across zll samples. The data shown are for subject

JM and were collected with Alpha equal to 90.
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Figure A2,15, Hit and false-alarm rates obtained for individual samples
are shown in ROC space. Each number plotted shows the data for the sample
associated with that number. The square symbol shows the average hit rate
and false alarm rate across all samples. The data shown are for subject

JM and were collected with Alpha equal to 180,
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Figure A2.16. Hit and false-alarm rates obtained for individual samples
are shown in ROC space. Each number plotted shows the data for the sample
associated with that number. The square symbol shows the average hit rate
and false alarm rate across all samples. The data shown are for subject

JM and were collected with Alpha equal to 270.
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Figure A2,17. Performance and stimulus measures as a function of Alpha.
Each panel shows the results for a particular sample. The upper half of
each panel shows the obtained proportion of "Yes" responses as a function
of Alpha. The lower half of each panel shows the power at the 500-Hz
component of the Fourier spectrum of the stimulus. Filled symbols are for
signal-plus-noise trials. Open symbols are for noise-alone trials.
Performance data are for subject SG, and were collected at 10 Log(E/No)

equal to 8.5 dB. (The figure extends through five pages.)
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Figure A2.18. Performance and stimulus measures as a function of Alpha.
"Each panel shows the results for a particular sample. The upper half of
each panel shows the obtained proportion of "Yes" responses as a function
of Alpha. The lower ﬁalf of each panel shows the power at the 500-Hz
component of the Fourier spectrum of the stimulus., Filled symbols are for
signal-plus-noise trials. Open symbols are for noise-alone ¢trials.
Performance data are for subject CV, and were collected at 10 Log(E/No)

equal to 8.5 dB. (The figure extends through five pages.)
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Figure A2,19, Performance and stimulus measures as a function of Alpha.
Each panel shows the results for a particular sample. The upper half of
each panel shows the obtained proportion of "Yes" responses as a function
of Alpha. The lower half of each panel shows the power at the 500-Hz
component of the Fourier spectrum of the stimulus. Filled symbols are for
signal-plus-noise trisls. Open symbols are for noise-alone trials.
Performance data are for subject TW, and were collected at 10 Log(E/No)

equal to 8.5 dB. (The figure extends through five pages.)
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Figure A2.20. Performance and stimulus measures as a function of Alpha.
Each panel shows the results for a particular sample. The upper half of
each panel shows the obtained proportion of "Yes" responses as a function
of Alpha. The lower half of each panel shows the power at the 500-Hz
component of the Fourier spectrum of the stimulus. Filled symbols are for
signal-plus-noise trials. Open symbols are for noise-alone trials.
Performance data are for subject JM, and were collected at 10 Log(E/No)

equal to 8.5 dB. (The figure extends through five pages.)



P (YES)

10 LOG (POWER)

lam-

075~

OO~~~

OO D

O D D |

O D DD

| IR

90
ALPHA



P (YES)

10 LOG (POWER)

SMP 6 SMP 7 SMP 9 SMP 10
lom- - "'ﬂ
0.75~ - -
S
0. 50 = - - -
@‘-u..o.d-"o‘
I"Q\
0.5-‘ &“h.d \\\ = -
o
O0tT—TT T T T T T T 1
10, - - o
20 - ﬂ %\-\‘ i V\ i V‘\.\.
o i e
O nndd——d) O -
~30, - . 0___9___0____9_0 - O-~-0
40, - - -
-50.




P (YES)

10 LOG (POWER)

1.00- SMP 11 SMP 13 SMP 14 _ SMP 1S
. A
&\U/.o-....o
0.50 A
Q ; \ Q p
\\ ’1 \‘ \ 1’ \\ Q RN
0 \\ P, A Y L 'l \\
025 \61 ® . o ®
0.0 ] ] ] | | | ) | i ) ¥ 1 ! I i ] | 1 I 1
-~10, -
o —0—0
-20, - '/\\ — \\/
| o—-o--0--8 | OO0 | OO
..m p-
O D= DD
-m -
{ OO0
=50, 1 ] 1 ] 1 1 1 ] || [} 1 ] | 1
0 9 180 270 ©0 80 160 210 O 9 180 220 O 80 180 20 0 80 180 20
ALPHA ALPHA ALPHA ALPHA ALPHA



P (YES)

10 LOG (POVER)

SMP 16

SMP 17

\vf '-.Q N

SMP 18

SMP 19

SMP 20

s .A\ ] ]
| oo |
30 o OO0 _ - 4 o000 | O--O—-0--0
..m - - - - P
N
-50 | | | | | 1 1 || 1 | 1 1 1 ] ! | ] ’ 1
O 0 160 270 0 90 160 2710 O 90 180 270 O 90 180 270 O 80 180 210
ALPHA ALPHA ALPHA ALPHA ALPHA



P (YES)

10 LOG (POVER)

SMP 21

SMP 22

SMP 23

SMP 24

o’o | | | ] | ) 1 || 1 | 1 i | i | | | ] i | | | |} 1 |

-10. -

. I\\/ P f\

4 . |o-¥-o--p | T

O @B

.m -

| o000

..m-n

-m | | | | ¥ | L] [ | | | | 3 | I | 1 ] 3 | ] | | | |
0 80 160 S0 180 210 0 90 180 210 O 90 180 210 D 90 180 210

ALPHA ALPHA ALPHA ALPHA ALPHA



Figure A2.21. Performance and stimulus measures as a function of Alpha.
Each panel shows the results for a particular sample. The upper half of
each panel shows the obtained proportion of "Yes" responses as a function
of Alpha. The lower hsalf of each panel shows the power at the 500-Hz
component of the Fourier spectrum of the stimulus, Filled symbols are for
signal-plus-noise trials. Open symbols are for noise-alone trials.
Performance data are for subject SG, and were collected at 10 Log(E/No)

equal tc 11.5 dB. (The figure extends through five pages.)
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Figure A2,22, Performance and stimulus measures as a function of Alpha.
Each panel shows the results for a particular sample. The upper half of
each panel shows the obtained propertion of "Yes" responses as a function
of Alpha. The lower half of each panel shows the power at the 500-Hz
component of the Fourler spectrum of the stimulus. Filled symbols are for
signal-plus—-noise trials. Open symbols are for noise-alone trials.
Performance data are for subject CV, and were collected at 10 Log{(E/No)

equal to 11.5 dB. (The figure extends through five pages.)
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Figure A2.23, Performance and stimulus measures as a function of Alpha.
Each panel shows the results for a particular sample. The upper half of
each panel shows the obtained proportion of "Yes" responses as a function
of Alpha. The lower half of each panel shows the power at the 500-Hz
component of the Fourier spectrum of the stimulus. Filled symbols are for
signal-plus-noise trials. Open symbols are for noise-alone trials.
Performance data are for subject TW, and were collected at 10 Log(E/No)

equal to 11,5 dB., (The figure extends through five pages.)
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Figure A2.24., Performance and stimulus measures as a function of Alpha.
Each panel shows the results for a particular sample. The upper half of
each panel shows the obtained proporticon of "Yes" responses as a function
of Alpha. The lower half of each panel shows the power at the 500-Hz
component of the Fourier spectrum of the stimulus. Filled symbols are for
signal-plus-noise trials, Open symbols are for noise-alone trials.
Performance data are for subject i, and were collected at 10 Log(E/No)

equal to 11.5 dB. (The figure extends through five pages.)
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